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Anew integral equation method for the numerical solution of the radialdsiger
equation in one dimension, developed by the authors (129Z¢omput. Physl34,
134), is extended to systems of coupled sdmger equations with both positive
and negative channel energies. The method, carried out in configuration space, is
based on the conversion of differential equations into a system of integral equa-
tions together with the application of a spectral type Clenshaw—Curtis quadrature.
An accompanying general multichannel FORTRAN code is available upon re-
quest. © 1999 Academic Press

1. INTRODUCTION

Thispaperextendsthe technique for solvingasingle channelone-dimensiomaligger”
equation presented in Gonzaktsal.[1] to coupled Schodinger equations. The advantage
of solving a system of integral equations rather than differential equations is the enha
numerical stability. The usual disadvantage of integral equations is that the associated r
ces are not sparse, making the numerical method computationally “expensive,” in contre
differential equation techniques, which lead to sparse matrices. In our method the non-s
matrix difficulty is circumvented by subdividing the full interval into partitions. In each pa
tition our matrices are non-sparse, but they are of small dimension (given by the numb
support points, usually 16, in each partition, times the number of channels). The proce
of combining the local solutions in each partition into a global solution is accomplished
a big matrix which is sparse, however. Furthermore, since the approximation of the |
solutions in each partition is super-algebraic in accuracy (we use interpolating polynon
at Chebyshev points), and since the local error in each partition is easily determined
method allows for a small overall number of discretization points, which in turn minimiz
the accumulation of round-off errors, already small for the integral equation method.

The kernel of the integral equation is obtained from Green'’s functions multiplied by
potential matrix. The former are written in terms of simple sine and cosine functions
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the wave number in each channel times the radial distance. In the negative energy che
the corresponding functions are made out of hyperbolic sines and decaying exponer
The numerical values of these latter functions can become very disparate and hence
lead to loss of accuracy. This problem is overcome by a special scaling procedure,
explained in detail in the text.

Another potential difficulty consists in satisfying the asymptotic boundary conditions
the case that the angular momentum nunte©. In order to avoid having to integrate out
to distances so large that the centripetal poterttiah- 1) /r 2 is negligible, it is preferable to
integrate out only to distances where the other potentials are negligible, and there matc
solution to the appropriate Bessel or Coulomb functions. In order to achieve the boun
conditions of outgoing waves in all channels other than the incident channel, itis necess:
solve the coupled integral equations as many times as there are positive energy channe
demonstrate in this paper that the matrix which performs the appropriate linear combin:
of theses solutions is well conditioned, hence the appropriate boundary conditions ce
achieved without undue loss of accuracy.

In summary, the extension of the integral equation method from one to several cou
channels requires an examination of how to achieve the appropriate boundary condit
both in the positive and the negative channels, and this, together with several nume
demonstrations, is the main content of the present paper.

Our method is expected to be well suited for situations where the potentials decay sl
with distance, where many channels of both positive and negative energies occur,
where high accuracy is required. An example is the description of the collision of atc
at low incident energies, corresponding to temperatures of micro-Kelvin. This situa
occurs in the Bose—Einstein condensation of atoms, and in the photo-association of &
into molecules previous to the condensation of the molecules [2]. Other applications
likely to occur for atomic or nuclear many-body systems, either confined to a lattice
in free space in the case that the treatment of such systems can be done by the
field approximation (also called Hartree—Fock), which leads to systems of a non-lir
Schroedinger equation [3]. The solution usually can be achieved iteratively, by mear
inhomogeneous terms introduced into the two-body equations. As shown in the Apper
our system of integral equations can be easily extended to include inhomogeneous t
in such a way that most parts of the numerical calculations need not be repeated
each iteration. Hence our method should be suitable for carrying out the Hartree—I
approximation.

The system of equations that we wish to solve is of the form

2

—52! +ri2L+\7(r) Rr)=ERr), 0O<r <oo, R0) =0, (1)
wherel is the p x p identity matrix, p is the number of channels coupled to each othe
L =diagli1(1+1),...,1,(p+1)),is the diagonal matrix of angular momentum number:
V(r) = (v,j (), is the potential matrixg = diagk2, ... k2, —K2,,, ..., —k2),kj >
0,j =1,..., p, is the diagonal energy matrix obtained from the wave numkeirseach
channel, andR(r) = (Rqy(r), ..., Rp(r))T is the p-vector valued wave function to be found
at each radial distance

We assume here that the number of positive energy charméds: 1, and thatv (r) is
continuous on0, co) and has the following behavior at the endpoints: it tends to zero
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fast or faster than/r_z, asr — oo, and ag — 0 it does not grow faster tharyd. Under
these conditions oW (r), the initial value problem (1) has a unique bounded solution ¢
(0, o0) (see Faddeev [4] and references therein), satisfying the asymptotic conditions

rIim (Rl(r) — sin(klr — Z%) —w exp(i (klr — Z%))) =0, 2)
rlimoo (R,-(r)—w,- exp(i (kjr—ﬁjzﬂ)>> =0, j=2,...,8 3)

rIim (Rj(r) — wj exp(—k;r)) =0, j=s+1....p, 4)

wherew; are unknown constants uniquely determined by the problem together with
solutionR(r). A more detailed description of the Schlinger equation and its reduction to
systems of ODEs can be found, e.qg., in Landau [5] and Schiff [6].

In our treatment we replace the boundary value problem (1)—(4) with a system of cou
integral equations, solved in the radial interval TQ for s different right hand sides,

T r
\lfj(r)—i-K‘ls(r)/C(r’)V(r’)\IJj(r’)dr’+k‘1C(r)/S(r’)V(r/)lIJj(r/)dr’
r 0

=Ujr), O<r<T,j=1..,5 (5)
where
— 1

V() =V()+ r_ZL’

K™ =diag(k; ', ... kgt ke, ... k).

S(r) = diag(sin(kar), ..., sin(ksr), sinh(ks,1r), . .., sinh(kpr)),

C(r) = diag(cogkyr), . .., CoSKsr ), Xp(—Ksyal ), . . ., €Xp(—Kpr))),
and

Uj(r) = (81 sin(kar), . .., s sin(ksr ), 0, ..., 0)T.

Here sinh denotes the hyperbolic sine, sink= (expt) — exp(—t))/2, ands is the usual
Kronecker symbol. The solution of (1)—(4) is obtained as a linear combinatg(of, . . .,
W,(r) as explained in the following section.

The integral equation is discretized via a spectral type composite Clenshaw—Curtis
merical quadrature. This method leads to a narrow banded linear system of equations
complexity of solving this system is linear in the number of support points. The latte
achieved by using the special semiseparable structure of the kernel of the integral equ
in configuration space. In our examples we observe numerical behavior typical for spe
methods, where after reaching a sufficient number of discretization points the error d
rapidly to the machine precision. Due to the well-conditioning of integral equations furtl
increase in the number of discretization points does produce only very slow accumule
of rounding errors.
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The paper is organized as follows. In Section 2 we derive the equivalent integral equs
formulation. In Section 3 we show that the global solution can be found as a linear cor
nation of local solutions of integral equations restricted to small subintervals of the parti
of the whole radial interval. Each local equation is discretized using the Clenshaw—Ci
quadrature with a very limited number of support points (16 in our implementation),
described in Section 4. In Section 5 we describe results of our numerical experiments
compare them with the results obtained via the Numerov, finite difference type methot

It is appropriate to clarify here that the main purpose of these experiments is to exatr
numerical difficulties arising from the transition from one channel to coupled chann
Therefore the simple Numerov method is chosen for numerical comparisons. An accu
comparison with a more advanced variable step size finite difference method of Raptis
Cash was done in [1]. The additional difficulty in the multichannel case arises from com|
ing particular solutions of the system of ScHiriger equations to satisfy required asymptoti
conditions and to suppress exponentially growing solutions. It is known and is furthe
lustrated in Section 5, Fig. 1, that an unlucky choice of initial guesses in finite differel
methods may lead to particular solutions which become increasingly linearly depenc
thus causing additional loss of accuracy. Our proposed “integral equation method” (I
results in well conditioned matching matrices as is illustrated with numerical example:

In the Appendix we present two new results concerning the single channel case obt:
since [1] was published, both relevant to the coupled channel case. In the first one
replace the general semiseparable kernel with a Volterra semiseparable kernel which
to a more effective algorithm, both time and memory wise. The FORTRAN code for solv
a coupled channel system of Sotlitiger equations with at least one positive channel at
an arbitrary number of positive and negative channels is based on this Volterra appre
The code is available now upon request and will be submitted to the joGorabputer
Physics Communication$he second result is the extension of IEM to the inhomogenec
case which occurs when part of the interaction is taken into account iteratively. Sumn
and conclusions are presented before the Appendixes.

2. INTEGRAL EQUATION FORMULATION

We wish to solve the system of radial ScHiriger equations

h2 d2 h2
——
2mdr2 + 2mr2

L+V(r)|R(r)=ER(r) (6)

subject to the conditions (2)—(4). Heras the radial distance of the particle of masgo
the scattering centek is the diagonal matrix of positive and negative energies, lais
the diagonal matrix of angular momentum numbers as defined in the Introdugtisthe
matrix of diagonal and coupling potentials anig Planck’s constant divided byi2 With
E = (2m/h?)E, we can write (6) as

d2 =
[er' + E} Re(r) = V(N Re(r), (7)

whereV(r) = L/r2+ V(r) andV(r) = (2m/)V(r).
The following proposition shows that the solution of this system of differential equatic
also satisfies the system of integral equations (5). It is assumet thahosen sufficiently
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large such that the potenti@(r) and the decaying solutions in negative energy channe
times their respective coupling potentials are numerically negligiblefor . In the propo-
sition, the symbal in the exponentials in Egs. (9) and (10) denages1, not to be confused
with the indexi = 1, ..., s subsequentially used throughout the paper.

PrROPOSITIONL. Let RV(r),i =1, ..., s, bethe unique solutions of the coupled systel
of Schibdinger equations

2
L?rzl + K} ROy =V@)RV(r), 0<r <oo, R0 =0, (8)

satisfying the asymptotic conditigns

rIi_)rr;o(Ri(i)(r) — sin(kir - %) " exp(i (kir - %))) =0, (9)

r|Lngo<R}”(r)—a)g”exp(i (k,—r - Eg’))) —0  j=1,...s]%#i, (10

im (RV(r) — o exp(—kjr)) =0, j=s+1....p, (11)

r—o00

where R’ (r) denotes the jth component of the solutioh Ret

[ sin(kar) R () + & costkar) R (r) |

sin(kst )R (r) + & cogksr)RY (1)

*V(r) = 0 1 RO
eXp(—ks+1r)(Rs+1(r) +is Rs+1(r))

, O<r <oo. (12)

exp(—kpr) (RP(N) + Ry (1)
Then the system of integral equations
T r
Wi (r) + Kfls(r)/C(r/)V(r/)\IJi(r/)dr’+ Kflc(r)/S(r’)V(r’)\lli(r’)dr/
r 0
=sneV(T), 0<r<T, (13)
has a solutiony; = R", Converselya solution of the system of integral equations
T r
w(r)+ K—ls(r)/C(r/)V(r/)xp(r’)dr’+ K‘1C(r)/S(r’)V(r’)lIJ(r’)dr’
r 0
a1

=Sr)| : |, O<r <T, (14)

Op

satisfieg8) for any choice of constants,, . . ., ap.
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Proof. Since forr close toT the system (8) decouples info independent Bessel
equations it follows thaR™, ..., R® are linearly independerg-vector valued functions
on [0, T].

Let RO satisfy (8)—(11) and consider

.
n@r) =ROr) + K—ls(r)/C(r/)V(r’)R(”(r/)dr’

r
~|—K*1C(r)/S(r’)V(r’)R(”(r’)dr/, O<r <T.
0
Differentiating we get

.
p (1) =RV() +5<r)/C(r’)va’)R(”(r’)dw

—§(r)/S(r/)V(r’)R‘i)(r/)dr/, O<r <T,
0

where §(r):diag(sin(k1r), .., sin(ksr), exp(—Ksqar), ..., exp(—kpr)) and C_(r) =
diag(cogkar), ..., cogksr), coshiks;ar), ..., coshikyr)). Differentiating one more time
and using (7) we obtain

'y = —Epn®(r).

Thus,u®(r)=Sr) (a1, ...,ap)T +C)(B1, ..., Bp)". Sincen (0) = 0 it follows that
pO@r) =Sr)(e, ..., ap) . Tofinday, ..., ap, multiply @ (T) by

Kdiag(sin(k;T), ..., sin(ksT),1,...,1),
multiply ' (T) by
diaglcogk;T),...,co8ksT), 1,..., 1)
and add to get
a1
= oO(T).
p

Conversely, if (r) is a solution of (14) then it is clear thét(0) = 0 and differentiating (13)
twice it is easy to see thalt (r) satisfies the differential equation as well. The propositio
isproved. m

Note that since for sufficiently large the components of the solutid’ corresponding
to the negative energy channefss=s+1, ..., p are negligibly small, it follows from
substitutingR" for ¥; into (13) that the corresponding components in the left hand side
(13) and hence the corresponding components in the right hand side of (13), namely,

exp(—k;T) (Rg)(T) + klRJm/(T)> sinhkir), j=s+1,....p
]



166 GONZALES ET AL.

are also negligibly small. Therefore in our practical implementation we set them to z
We also assume that the vectors

sin(ky T)R(T) + £ cosky T)RY (T)
Y (T) = : . i=1,...,s

sin(ksT)R((T) + & cogks T)RY'(T)

are linearly independent. Therefore we chose the natural coordinate basis for the
of d5°(T),..., ®(T) and instead of solving Eq. (14) wida given by ®;, we solve
numerically forj = 1, ..., s the following systems of integral equations,

T T
wi(r)+ Kfls(r)/C(r’)V(r’)\Ifj(r’)dr’+ K*1C(r)/S(r’)V(r/)\IJ,-(r/)dr’
= U (), O<r<T,j=1,...,58, (15)

whereU; isas definedin (5). The quantitiég, j =1, ..., s, are columnvectors of lengih
However, none of them obey the desired boundary condition (2)—(4), unlegsandj = 1.
In the general case the boundary conditions (2)—(4) are achieved through an approj
linear combination of¥y, ..., Wg as explained below. We do not anticipate numerice
difficulties in the case whefl is nearT, for which ®{” (To), ..., @5 (To) are linearly
dependent. In this case, the compwigdr ) become large, but retain high relative accurac
This is because the solutions of the homogeneous equation (14) with zeros in the right
side also satisfy (8). Itis similar to the case of the inverse iteration algorithm for comput
eigenvectors, where one solves a nearly singular linear system of equations, for whicl
solution is an approximate eigenvector, see Golub and Van Loan [11, Sect. 7.6].

Next we show how to findR(r) = R (r) interms of¥,, ..., Ws. Forr ~ T the system
(1)—(4) decouples into independent Riccati—-Bessel equations for the components ©
vectorR,

d> 4+ ,
and similar equations for=s+1, ..., p. Each of the first equations has a pair of linearly

independent solutions, the Riccati—-Bessel functions,

. wZ
F|i(r) =2),(2 = \/ 7‘]|i+%(z)
4
G = 2% @ = =/ =V, @,

wherez = kir (cf. Abramovitz and Stegun [12]). Since nekrthe functionsyy, ..., ¥y

and
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satisfy this decoupled system of Riccati—Bessel equations, it follows that

Wai(r) aij B, (1) + B1 G, (r)

‘st.(r) s Fls(r)‘i",stGIs(r)
To find «j; andg;; differentiate
Wij (1) = aij B, (r) + Bij Gy, (r)
inr to get
W (r) = aij Fy (r) + i G, (r).

Multiply the first equation by, (r) and the second b@, (r), subtract and substitute= T
to get

o — Vi (MG, (T) — ¥ (T)Gy, (T)

1T RG] (M) - F(MG, (M)

(16)

and in a similar way,

Wi (MF(T) — ¥ (MR (T)
o= — ! . 17
Pi R (MG (T) — F (TG (T) a7

Asymptotically, the Riccati—Bessel functioRs(r ) andG, (r) behave like sitkr — %’) and
cogkr — %’), respectively. Under our assumptioRg’) is a unique linear combination of
"IJ:L’ LN} "I‘jSa

R=x1W1+ -+ XsWs.

Therefore it follows from (2) and (3) that asymptotically this linear combination behay
as

. a1 R, (1) + B1; G, () . agj sin(ker — 4%) + Byj coglkar — 4F)

> X% : => X :
= agiRu ) + B5iGl) | 1T | asysin(ker — &) + Bsj cos(ker — &)
while our desired solution behaves as

sin(ker — %7) + w1 cos(kar — &7) +i sin(kr — 47))

ws( cogksr — &) + i sin(ksr — &7))

(1+iwy) sin(kir — &%) + oy cog(ker — 4F)

iws Sin(kst — 57) + ws cos(ksh — &)
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Comparing the entries in the first position we get

s s
Z(leXjZJ.—I-ia)l, Zﬂlejzwl.
j=1

=1

Excludingw;, we obtain

s s
Z(xleJ —i Z,Blej =1
j=1 j=1

In a similar way, excluding, . . ., ws from equations corresponding to positions 2 tee
obtain the following linear system of equations fqr . . ., Xs,

a1 —ipur - s —ifis| [Xa 1
: : : = (18)
Qs1 — i,351 crr Oss— i,BSS Xs 0
The asymptotic constants, . . ., ws are now given by
w1 Buu - Bis| [ X1
=l ] (19)
Ws Bst -+ PBss Xs
The asymptotic constantss, 1, ..., wp can be found in a similar way; they usually are

however, of little interest to physicists.

We remark that instead of matching to (2) and (3), one can match to the follow
asymptotic condition§yj sin(kir —1iw /2) + p; cogkir —li7/2),i =1, ...,s. Here they’s
are elements ofthe so-called scattefitignatrix, while thew’s are elements of th@-matrix,
with @ = —2K (1 — iK)~1, which is related to the scatterigmatrix viaS= 1 —iQ. In
this case there is no need for complex arithmetic. The only change is that instead of
we solve

a1 - ooas| [ Xa 1
=|: (20)
Qs1 -+ Ogss Xs 0
and obtainpy, ..., ps from (19) instead ofw, ..., ws. We remark that the coefficient

matrix in (20) can become singular, as opposed to (18). This means that the phase
¢; = arctar(p;) go through multiples ofr /2, which is of some interest to physicists. Fol
our numerical applications we implemented (20) rather than (18) and, in fact, detect
particular case of largg; as reported in Section 5 below. Largehad no visible ill effect
on the overall accuracy of computation.

The summary of our general algorithm is as follows.

1. Solve (15) forj =1, ...,s.

2. Computex;j andg;j, i, j=1,...,s, from (16) and (17).
3. Solve (20) and compuia, ..., ps from (19).
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In our numerical implementation described below, the functigng ) are found as
piecewise polynomials at Chebyshev support points. The values of their derivative
r =T are obtained by differentiating the integral equations (15) and substitutig. The
values of Riccati—-Bessel functions and their derivatives are readily available from recur
relations satisfied by these functions, or from a scientific subroutine library.

3. LOCAL SOLUTIONS

To avoid notational complexity we do not use special symbols to distinguish vect
from matrices. Instead we alert the reader that the quantitjes, B, e are vectors, and
K1, V,C,S Y, Z, M, |, E (and their products) are matrices.

Because of the semiseparable structure of the kernel of the integral equation (15)
Clenshaw—Curtis quadrature, which gives at no extra cost the whole anti-derivative func
is for our purposes the most appropriate method for discretizing (15). This quadratu
based on the interpolation of the integrand with a polynomial at Chebyshev support pc
Since the length of the interval of integratidn,may require many support points, and in or
der to avoid working with high degree polynomials, we use the composite Clenshaw—C
quadrature suggested by Greengard and Rokhlin [9], by partitionjrig jBto sufficiently
small subintervals. The second and equally important reason for partitioning the inte
[0, T] into smaller size subintervals and restricting the integral equation to each of thel
that in the negative energy channdds; s+ 1, ..., p, the kernel contains an exponentially
growing component sifflar). This component can be scaled down on subintervals of pal
tion as will be explained after Eq. (34) below. A third important reason is that the procec
of obtaining the global solutiod out of the local solutions in each partition leads to
narrow banded matrix, whose inversion only requires an effort proportional to the nun
of partitions. The procedure will now be described.

Each partition will be denoted by the subscrigt=1, ..., m. For the sake of notational
simplicity, we omit from now on the index in Y; andZ; and in other quantities, such as
A andB; below, whenever it does not cause any ambiguity.

Consider the family of restricted integrad equations in each partitjdor two matrix
valued functionsy (r) andZ(r),

bi r
Yi() + KLS(r) /C<r’>V<r/m<r’)dr’ +Klcm) [sevavia)dr
r b,1
= S(r), bi.i<r <h, (21)

and

bi r
Zi(r)+ Kfls(r)/C(r/)V(r’)Zi (rhdr' + K=Cmr) /S(r’)V(r/)Zi (rHdr’
r bi_1

=C(r), b_i1=<r<h, (22)

respectively. Herbp=0 < b; < --- < byn_1 < by = T is some partitioning of the interval
[0, T]. Each column of the matricééandZ corresponds to a local solution of the couplec
Eq. (15), defined entirely in partition and “driven” by the corresponding column in the
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matrix Sor C, respectively. For a sufficiently fine partitioning, these equations have unic
solutionsY; and Z;, which arep x p matrix valued functions. We now observe that the
global solution¥; (r) of (15) on fi_1, by] is a linear combination o¥; andZ;. Indeed, it
follows from (15) that forb;_; <r < by,

b r
wi(r)+ K‘ls(r)/C(r/)V(r/)lIJj(r/)dr’ + KCr) /S(r’)V(r/)\IJ,-(r/)dr/
r bi_1

T
= S(r) (ej - K‘l/C(r’)V(r’)\Ifj(r’)dr’)
bi

bi_1
+C() (—K1/S(r’)V(r/)\IJj(r/)dr’), (23)

0

wheree; denotes the unit coordinate vector with 1 in gtk position. Foi =1, ..., m, let
the quantities in parentheses be denoted by

.
A =g — K‘l/C(r’)V(r’)\IJj(r’)dr’ (24)
b
and
bi_1
Bi=—-K™1 /S(r/)V(r’)\IJJ- (r'ydr’. (25)

0

It follows from (21) and (22) tha¥; A; + Z; B; satisfies (23) and hence
Vi)=Y A +ZB, bi_1<r <b.

Assuming thaty; and Z; are known, we show now how to find and B;. Let us rewrite
(24) as

m b
A =g —K? Z /C(r’)V(r’)\Ifj(r’)dr’.

g=i+1 bg_1

Since on by_1, by], ¥ = YqAq + Z4By, we can also write

A=¢g - Em: (CYy) Aq — zm: (CZy)By, (26)
g=i+1 g=i+1
where, by definition,
bq
(CYy =K /C(r/)V(r’)Yq(r’)dr/, (27)

bg-1
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and
bq
(CZy) =K /C(r/)V(r/)Zq(r/)dr’. (28)
bg-1
Similarly,
i—1 i—1
Bi=—> (SWA — Y (SZ)B, (29)
g=1 g=1

with the p x p matrices(SY;) and(S Z;) given in each partition by

by
(SYy) = K™ /S(r’)V(r/)Yq(r/)dr’ (30)
bq,1
and
by
(SZ) =K /S(r’)V(r’)Zq(r’)dr’. (31)
bq—l

Note thatAy, =e; and B; =0. Combining (26) and (29) far=1, ..., m, we obtain the
following system of linear equations for th#g’s andB;'s,

Al ej
A €
(An A12) Am | _ | & (32)
Az A/ | By ol’
B, 0
Bm 0
where
I CY, CY; --- CVYp
| CYs --- CYy
A]_l = | .. CYm 5
CVYn
0 I
0 Cz CzZ --- CZy
0 CZ --- CZy
A = 0 CZn |,
CZn
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0 0
Sy
A= 1|SY . 0 ,
SY, -+ SYnoo 0
SY, -+ SY2 SY.1 O
and
| 0
Sz
An=1|Sz . I
Sz, -+ SZnoo |
SZ -+ SZno2 SZn |

For notational convenience we henceforth omit the parentheses in definitions (27),
(30), and (31). The system of linear equations (32) has a unique solution because othe
(15) would not be uniquely solvable. Using elementary row operations (e.g., subtrac
the second row from the first, then the third row from the second, etc.) Eq. (32) car
transformed into a sparse system,

A 0
Ao 0
' 0
(Ell E12) Am — e
Yo1 X2 B 0 '
Bz 0
Bm 0
where
I CY,— 1 0
| CY;—1
Y= | ,
. CYy— |
0 |
0 C% 0
0 CZzZ
Yo = o . ,
CZn
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0 0
Sv
Yo = 0 ;
SYn_2 0
0 SYn1 O
and
I 0
Sz — |
222 = .. |
SZno— 1 I
0 SZn1—1 |
In a compact form we rewrite this equation as
LA=F. (33)

Changing the order of the varibles, we can finally transform the coefficient matrix into
block tridiagonal system,

A
I Mg 0 B, 0
Ma1 | My A, 0
Mz . B | = O , (34)
I M m—1m : ej
0 Mmm-1 I Am 0
Bm
where each block is af2x 2p matrix and with
CY, —1 Cgz .
Mi—l,i=< '0 0'), i=2,...,m,
and
0 0 .
Ml.|1—<s\{_1 SZ—1—|>’ 1=2,...,m

The coefficient matrix in (34) is narrow banded and therefore, the Gaussian elimina
with partial pivoting (see [11, Sect. 5.3]) can be used at the expen€xrof arithmetic
operations only to solve (34).

Although Eq. (34) is theoretically correct, numerically it is feasible only in the ca
when all channels have positive energies, that is, whens. A scaling procedure for
negative channels will now be described. The corresponding numerical algorithm wil
presented in Subsection 4.1. Suppose that chans@l negative energy channel. Then th
Ith component ofY; is of the size of exfk b;) which can be very large fadr close tom,
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while thelth component ofZ; becomes very small, of the size of éxgk b;). In order
to balance the size of computed quantities, the following scaling is introduced in nege
energy channels. Léf; denote the scaling diagonal matrices

Ei =diagd, ..., 1 exp(—kst1bi), ..., exp(—kphi)), i=1...,m,

and redefine
i=YE, z=2zE' a=E'A, b=EB,
with the result that in théth subinterval Eq. (25) now reads
Vi =vyia +zb.
Next introduce the globalp x 2mp scaling diagonal matrix
E =diag(Ey, ..., Em E; % ..., EY)

and the scaled versions 8fr) andC(r),

c(r) = ETIC(r), sr) = ES(r), rel[bi_1,b].

With this notation in place, the local equations (21) and (22) become

b
yi(r) + K*ls(r)/c(r’)V(r’)yi(r’)dr/ + K~ ter)
r b

/s(r/)V(r’)yi(r/)dr’

=s(), b_i1=<r<b, (35)

and

by r
zi(r)+ K*ls(r)/c(r’)V(r’)zi(r’)dr/+ K ~tc(r) / stHV (I Hz(r'ydr’
r bi_1

=c(r), b_i1<r<hbh. (36)

Note that the matriceg, S, C, andK ~* are all diagonal and therefore commute with eac
other. Also note that the entries édrands, and hence iry; andz, are now of an ordinary
size.

The inner products (27), (28), (30), and (31) are changed exactly in the same way,
C, S Yy, andZ, replaced by the corresponding lower case. Equation (33) can be rewri
as

E-'LEE'A=E"'F,
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or in more detail,

0
a:
' 0
ap .
’ 0
A1 A2\ [@m | N
A1 Az by 0 ’
b, :
[ (')
where
| E['Eaxcy,—1) 0
| E;'Es(cys — 1)
A1l = I . ,
Emi1Em(Cym — 1)
0 |
0 E;'Excz) 0
0 E,'Ez(czs)
Ao = 0 . ,
Em’1Em(Czm)
0 0
0 0
E2E; (sy)
Az = 0 ,
Em—2Ent3(S¥n-2) 0
0 Em1En 2(S¥-1) O.
and
| 0
ExE;l(sza— 1)
Aoo = . |

Em72 E%is(s%—Z = ) I
0 Em—lErgiz(Szm—l - I) I

Note that the entries iE;E; . ; andE; E;~%, are also of an ordinary size. Again changing
order of variables we transform it into a banded block tridiagonal system
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a

I mp 0 by 8
M1 | Ma3 ap .
mgp - b | =1| -1, (37)
. : 0
. I mmfl,m . ej
0 Mmm-1 I 8m 0
b
where
(e =1 cg .
m|—1,|—< 0 0), i=2,...,m,
and
mi,i1=< 0 0 ) i=2,...m
S¥-1 SZ_1—|

4. DISCRETIZATION OF LOCAL EQUATIONS

Although the discretization procedure described below is similar to the one in [1],
because of the added notational complexity, we repeat the main steps of this discretiz
for the reader’s convenience.

In this section we describe the numerical technique for discretizing the local equat
(21) and (22), which is a generalization to the multi-channel case of Section 4 in
It is based on the Clenshaw—Curtis quadrature which is well suited for computing &
derivatives and hence for discretizing integrals present in (21) and (22). Asbames a
function given in the intervalf1, 1] and define

r
F(r)= / faydr, —1<r <1l
-1

Further, assume thdt(r) can be expanded in a finite set of Chebyshev polynomials, i.e

n
fry=>oTir), -1<r<1, (38)
j=0
where

T;(r) = cogj arccosr)), j=0,1,....,n,

are the Chebyshev polynomials. Clenshaw and Curtis [8] showed that if

n+1

FO)=>_ BT,

j=0
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then
[1307 ﬂlv RCEY ,Bn]T = SL[aC)s al, ceey an]Ta
where
0 0
11 -11 ... (=™ 1
10 —3
1 0
1 1
1 i 0 —3
SL = 1 1
6
1
0 1 0 T 2(n=1
0 L 0

is the so-called left spectral integration matrix. Herg' [ denotes the transpose of the
column vectow. Similarly, if

) 1 N+l
F(r)=/f(r’)dr’=ZﬂjTj(r),
r =0
then
[Bo. B1, .-, Bn]" = Srleo, 1, ..., ] ",

where the right spectral integration matrix is given by

0 0
1 o1 10 -3
-1 0 1
i 0 -3
Sk = -1 1
6
’ .. 1
0 -1 -0 201
0 - 0
SinceT; (1) =1 forall j, we also have that
1 n+1
F(l):/f(r’)dr’:Zﬁj. (39)
Y j=0

Using (38) one can find the Chebyshev—Fourier coefficientspf f (r) as follows. Let
v, K=0, ..., n, denote the zeros df, 1 viz.,

2k + Dr

=COS———,
i 20+ 1)
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so that

k+1D)jx

Tj () = cos 2+ )

, k,j=0,...,n.

Substituting =1, k=0, ..., n, into (38), we obtain that

f (o) oo
=],

f(tn) On
whereC is a discrete cosine transform matrix whose elements are specified by
CkJ':TJ'(‘L'k), k,j:O,...,n.

The matrixC has orthogonal columns, that is,

n n
Cc'Cc=diag(n,=,...,= ).
(. 7)

Therefore,

12 2
cl= diag(—, ——— —)CT.
n’n n

Moreover, the matrixC (as well asC™ andC~1) can be applied to a vector at the cost o
O(nlogn) arithmetic operations. These and other properties of discrete cosine transfc
can be found in C. Van Loan [13]. Thus the vector

[ao, a1, ... ,an]T = C_l[ f (o), f(z0), ..., f(tn)]T

can be easily found from values 6éfato, .. ., 7,. In particular,
F (t0) f (o)
© | =csct| o (40)
F(tn) f(Tn)

and, similarly,

F (7o) f (o)
| =CcsgCt| . (41)
F (tn) f (tn)

We remark that in writing the equality sign in (40) and (41), we assumeghatis
set to zero. This is an acceptable assumption becégseis itself only approximately
represented by the polynomial in (38) and the overall accuracy of approximation is
affected.



COUPLED SCHRODINGER EQUATIONS 179

The formulas (40) and (41) can be generalized for intentgls [ b;] other than F1, 1]
by the linear change of variable

1 1
hi(t) = E(bi —b_pt+ é(bi +bi_1).

Thus if
‘E]-(i)Zhi(rj), j=0,...,n
then
FE)] ()
S Y — Hesct| (42)
F () f(xf")
and, similarly,
|E r(i) f t(i)
(.O ) (b - bi—l)CS c-1 (.0 )
. = T R : . (43)
F () f(xf)

Using (40) and (41) we can now discretize the local equations (21) and (22) as follows
J denote theén + 1) p x (n + 1) p permutation matrix which transforms a vector

N
(a11, ..., 8p1, @12, ..., Ap2, -+, Am, - - -5 Bpntl)

into the vector

N
(@11, &12, . .., A1,ng1, A21, 22, - - -, A2n41, Apl, Ap2, - -+, Apnyl) -

Let us also denote
Yi(z) S(z”)
Yi=| |, s=| : [,
i (x) S(r")
and similarlyZ; andC;.
Let us also introduce the following block diagonal matrices with 1 blocks of the same
size,p x p,
QL =diag(CS.C ™, ....,CS.CY),
Qr = diag(CSrC™, ..., CSRC™Y),
Ds = diag(S(z5"), - .-, S(z")),
and similarlyDc,, Dcy, Dsy, and finallyK ~t =diag(K =2, ..., K1),

In particular, the produciDsy Y; rearranges the entries Bisy Y; in such a way that
block by block application o€S_ C~? transforms the values @sy Y; into values of its
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anti-derivative, which are returned to the original ordering by the applicatidd o#vith
this notation in place we can discretize now (21) as

(I + WKA(DSJTQRJDC\A + DciJTQLJst)>Yi =S, (44

and similarly for (22) we have

(. + WK*(DSJTQRJDCV‘ + DCJTQLJDSV)>Zi =G, (45)
wherel is the identity matrix of an appropriate size. The solution of (44) and (45) c
be done using standard software, e.g., Gaussian elimination with partial pivoting at
cost of O(n®) arithmetic operations. The solutiolYs andZ; give approximate values to
the local functionsy;(r) and Zi(r) at the Chebyshev nodes in each of the subinterve
[bi_1, b],i =1, ..., m. The inner products (27), (28), (30), and (31) can now be obtain
using (39) as follows. Let

R =diag(SL.C™,...,S.C™),

then
(CY) = %K*[h, 15, ..., 1p]R.IDcv Y,
(CZ) = wK‘l[ll, 1, ..., 1p]R IDcv Zi,
(SY) = %K—lul, 1, ..., 1,]JR IDsyYi,
(Sz) = %K*[h, 1, ..., 1p]R IDsyZi,

where 1 is ap x (n+ 1) matrix whose row numbek equals [1. .., 1], while the rest are
zeros. The solution of the scaled problem is computed in very much the same way.

The computation of each of the above inner products takgsn + 1)) arithmetic op-
erations after [4, 1,,...,1p]RL is precomputed at the cost @¥((n+ 1)%) flops and is
negligible relative to the cost of solving (44) and (45). These inner products are substit
into (34) and the weight#y, B; are obtained at the cost &f(pm) arithmetic operations.
The coefficient inO(m) is of order unity and hence much smaller thgnn + 1))2 in
O((p(n+1))®m) needed to comput¥;, Z;,i =1, ..., m. Thus the overall cost of the
computation is dominated by tf@((p(n + 1))m) cost of solving local equations (44) and
(45). The cost of solving local equations can be reduced by the use of parallel proce:
since the calculation of; andZ; on each subinterval is independent.

Using the sparseness 8f andSg and the fast implementation of the discrete cosin
transform, one may also try to reduce the cost of solving (44) and (45) by the use of iter
algorithms.

After A; andB; are found we finally obtain

V(%)
: ~YiA +7ZB.
W (")
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To estimate the accuracy of approximation, we use the following property of Chebys
expansions:

ProPOSITION2. Let feCP[-1,1], p> 1, and

for)y=> eTyr), -1=<r=1
j=0

Then
d? 1 c
0
and
d c 1

j=0

The proof of this proposition is outlined in [10, p. 29]. It implies thaf i) is analytic
then the convergence of the Chebyshev expansion is super-linear.

Using this proposition, one can show, see [9], thatferl, ..., m,

¥ (%) c
L - A+ZiB)| < et
v () o
whereC,, is a constant which depends pronly, provided thaw (r) is continuously differ-
entiablep times for O<r < co.

This spectral type high accuracy of approximationigfwith Y; A; + Z; B;, for modest
values ofn, was illustrated for the uncoupled channel case in [1], and will be further illu
trated with numerical examples in the next section. The high accuracy of approxima
here is due to the special feature of Clenshaw—Curtis quadrature: the highly accurate
putation of the antiderivative. Since the kernel of the integral equations (21) and (22) is
smooth across the diagorfal=r'}, the standard Nystrom type discretization methods wi
fail to give high accuracy in this case (see, e.g., L. M. Delves and J. L. Mohamed [14])

Finally, we remark that the values df; are found inside each of the subintervals o
partition at Chebyshev nodeé'), ..., 7. The value of¥; at T (or any other point in
[0, T], for that matter) can be found as follows. Usi@g* we can find Chebyshev—Fourier
coefficients in b _1, bi],

g’ i (z”)

o) v ()

Thus,
n .
Vi) =Y o’ Thi(r), bia<r<b.
k=0

The value of@;(r) (or | (r)) for r # 7" can be found using the recursion satisfied b
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Chebyshev polynomials,

Tkr1(X) = 2X Tk (X) — Tk-1(X).
In fact, we have used a backward (humerically more reliable) recursion suggested in |
4.1. The Scaled Algorithm

Here we outline in a pseudocode our algorithm for the scaled version of local equat
(35) and (36).

Forj=1,...,m,
Fori=1,...,s,
Solve discretizations of (35) and (36),

b —bi_
<| &b > l)Kfl(DSJTQRJDC\,i +DQJTQLJDS\,,))Yi =5,

bi —bi_
(| + MK*(DSJTQRJDCW + DQJTQLJDS\,I))Zi =g,

2
Compute

bi —bi_1, 4

(cy) = TK [11, 12, ..., 1]RIDcy i,
b —bi_

(cz) = 'T”K‘llll, 1y, ..., 1,]R.IDcy Z,
b —bi_

(Sy) = 'T”K‘llll, 1y, ..., 1,JRLIDsyYi,
bi —bi_

(s2) = 'T”K‘llll, 1p...., 1,]R.IDsyZ,

Endfor

Form and solve the linear system of equations (37).
Compute Chebyshev coefficients of the components of the
solutionW; in the last subinterval of partition,

X] = dlag(c_la DR C_l)J(ymam + Zmbm)'

Fori=1,...,s,
use the Chebyshev coefficients of iltle
component of¥/;, namely,

Xj((i=Dn+izin+i)
to computeW;; (T) and\Il{j (T) using
the above three-term recursion satisfied by
Chebyshev polynomials and their derivatives
and computey;j andg;; via (16) and (17).
Endfor

Solve (20).
Endfor.

5. NUMERICAL EXAMPLES

Thefirsttwo examples are used for numerical testing of the IEM. They contain exponel
potentials for which analytical solutions are known in some cases and are not inter
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to represent real life physical situations. A more realistic Lennard—Jones potential |
constants corresponding to a real case is used as a third example.
The exponential potential matrix is of the form

v1 u
V()= ( )Vo exp(—r/a), (46)
u v

and the values o, «, v1, vz, U, and of the wave numbérare specified in the numerical
applications below. In the first example both channels have positive energies of equal \
k2. In the second example one channel has a positive ekérgnd the other channel a
negative energy-k2. In the first example the analytic solution can be found, in the seco
example an analytic solution is not known to the authors. In the first two examples
numerical IEM is compared with a finite difference method, so as to obtain a compar
of accuracy of both methods. The finite difference method used is the Numerov algori
[15], which was also used in our single channel paper [1], along with a variable step
method of Raptis and Cash, for numerical comparisons. We would like to emphasize «
more that the purpose of the numerical experiments in this paper is mainly to illust
the new features characteristic to coupled as opposed to single channel equations,
than comparing the accuracy of numerical methods, which was already done in [1].
choose here the Numerov method as a generic finite difference method because it
easy to implement, reliable, and widely used method, although we are now aware of r
advanced finite difference methods such as the recently developed exponentially
methods, see [16, 17] and references therein. A numerical comparison of our method
a finite element method and a Numerov-type finite difference method for the case of
Lennard—Jones potential can be found in [18].

In particular, we observe in the first example, in Subsection 5.1 below, that regardle:
which finite difference method is used for solving initial value problems, the matching
trix for combining these solutions to satisfy the required asymptotic conditions can bec
increasingly ill conditioned. The IEM method does not have this potential disadvantage
will be shown. We also observe in the second example of mixed positive-negative en
channels that the combination of outgoing and incoming solutions of initial value proble
in finite difference methods needed to suppress growing solutions becomes quite cur
some with an increasing number of channels. The IEM requires certain scaling of neg
channels as described in Section 2, but there is no difficulty in combining the partic
solutions to satisfy the required asymptotics.

5.1. Two Positive Channel Energies

The solution of the coupled equations is defined such that the asymptotic form of
upper and lower components is

v— (%) ~ (Fl(klf) +,01G1(k1f))’ a7)
Y2 02G2(Kar)

where the function; andG; are the regular and irregular Riccati-Bessel functpng(z )
and -z Y, (z;), respectively, and; =kir for i =1, 2. For the present casg =k, =k and
li=l=I.

The procedure for obtaining the solution of the coupled equations by finite differe
methods consists of constructing two functigredr , whose upper and lower components
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are zero at the origin, but which have different combinations of slopes at the origin,

o)) w0 =) @

The values ok andy for the appropriate linear combination of the two solutions
U = xE + yIl. (49)

are obtained from the asymptotic requirement of (47). This is implemented by expres
the upper and lower components of the functi@sndI1 in terms of the functiong
andG;

& = A:F +B:G; m=AF+B:G,i=12 (50)

in the vicinity ofr =T, asis done near Eq. (16). For sufficiently large valuek,dbr which
the non-centripetal potentials become negligible, the quan#itasd B become constants.
If the matricesAr andBr (F stands for the finite difference method) are defined as

A Ay Bi: B
AF=(” 1) : BF=(1é 1) (51)
AZE Azﬂ =T BZE BZﬂ r=T
thenx andy are obtained from
4(5) = (o) &
F y - O 1)
andp; andp, are obtained from
1
(”1> - BFA;1< ) (53)
02 0

Because the functiong andIl are defined near the origin, then, under certain conditio
they can become asymptotically nearly linearly dependent, regardless of the specific
difference method used to solve (48). The more dependent they are, the more ill-conditi
the matrix4r becomes, and the operatixz%?:l in (53) introduces correspondingly large er-
rors, which add themselves to the intrinsic errors of the finite difference method. The for
error can be assessed from the condition number of the mégri¥or the exponential case
with | =0 the functionsg, I, the matrixA4g, and its condition number can all be obtainec
analytically in terms of expressions involving Bessel functions and their derivatives. |
found that as the wave numbkrdecreases toward zero the condition humber increas
exponentially as can be seen in Fig. 1. The effect becomes more pronounced as the
« of the exponential potential increases, as can be seen from Fig. 2.

By contrast the IEM method does not suffer from this difficulty. Intke0 case it au-
tomatically produces the correct asymptotic behavior in both channels, without requi
the linear combination of two solutions. Ho# 0 two solutions and their appropriate lineat
combination are required. They are obtained by driving the solution of the integral ec
tion (15) either by the vectar, = (sin(kir), 0)T or v, = (0, sin(kor ))T. The solutionV is
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FIG.1. The condition number of the matri®, defined in Eq. (51), as a function of the wave nunigédor the
two channel case with exponential potentials and positive energies. The range of the exponential potential d
in Eq. (46) ise =1 fm~. The larger the condition number, the less independent the two solutions of the couy
equations become. The angular momentum number is denoteptby three lower curves are obtained with the
integral equation method.

obtained from these two solutions as explained in Section 2 above, by means of Eg.
Our numerical examples confirm the well conditioning of the coefficient matrix in (20).
The condition number of a matrix is defined as the ratio of the largest to the sma
singular value of the matrix [11]. The singular values can be obtained numerically thro
the subroutine DLSVRR in the International Mathematical Scientific Library (IMSL.)

5.1.1. Numerical results.In this example the energies in both channels are equal &
positive, and the potential strengthV¥=5/+/2 fm=2 (the fm is the nuclear unit of
length=10"1°m). The potential matrix, defined in (46), is taken to be of the form

<U1 u ) _ <1 1 ) ’ (54)

u v 1 -1

i.e., the diagonal potential in the incident channel is repulsive, in the second channel
attractive, and the coupling potential is of the same strength. The values of the decay cor
a will be either 1f mor 4 f m, and the corresponding values of the truncation radiusl

be 50f mor 140 f m, respectively. The condition numbers for these two cases are show
Figs. 1 and 2, as a function of the wave numiet k, = k. The finite difference results are
obtained with a coupled channel Numerov method which is accurate to the sixth orde
the step-sizé in each three-point interval (while the global accuracy is of oreler#), and
h=0.015625f m. For the IEM the number of partitions, each with 16 Chebyshev poin
for the two cases are 65 and 114, respectively. In the exponential examples the part
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FIG. 2. Same as Fig. 1 for the cage=4 fm~1. The dotted line is obtained via an analytic simulation of the
finite difference function& andll, described in the text.

are equally spaced. The calculation is done on an IBM mainframe, in double precision
approximately 14 significant figures.

For the Numerov finite difference method the condition numbers of the mdtrifor
thea =1 case are less than about 100 for the three angular momentum numbers st
indicating that no great loss of accuracy takes place in combining the two fun&iemdl1
in order to obtainl. However, for thex =4 case the condition numbers become very larg
for small values ok, in agreement with the theoretical expectation, based on the anal
solutions, which fol =0 is shown by means of the dotted line in Fig. 2. By contrast tt
condition numbers for the IEM case always remain small, less than approximately :
The loss of accuracy for the Numerov case, and the lack of loss of accuracy for the |
expected from the values of the condition numbers of the matrix are analyzed in Fig. 3 fo
a =4, =0 case. Shown are the absolute errors in the combined values of the asymr:
coefficientsp; and p, as a function of the wave number. These errors are obtained
comparing the numerical values with the analytical ones. The IEM error (solid circles
approximately one order of magnitude larger than the machine accuracy, while the Num
errors are much larger and increase with decreasing valulesasf is expected from the
condition numbers. A further demonstration that the condition numbers are responsib
large part for the lack of accuracy of thevalues, rather than the error of the finite differenc
algorithm, is given by the two curves labeled Attr. and Rep. They represent the Nume
error of thep values for uncoupled cases, using either the attractive or the repulsive diag
potential, respectively. This error is much lower than that for the coupled case, showing
the process of performing the linear combination of the two funct®masidIT introduces
an additional substantial error.
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FIG.3. Accuracy ofthe asymptotic constapisandp, for the coupled channel case with exponential potential
and equal energies, as a function of the wave nurkpfemr | = 0. The accuracy is obtained by comparison with
the analytic results. The two middle lines, denoted Rep. and Attr., represent the accuracy of the Numerov m
for the uncoupled cases, with a repulsive or attractive potential, respectively.

In Figs. 4 and 5 we examine in more detail the condition numbers for the éEM4
case. It can be seen from Fig. 4 that among the vallieugdues examined, the values of
the condition number are largest for 2 in the vicinity ofk = 0.3 fm~1. A more detailed
study shows that fdk in the interval 0.28 to 31 f m~* the determinant of the matri&gy
(the IEM equivalent of4g), goes through a zero, with a sharp discontinuity fremo
to +o00 neark =0.30. At this point the values gf; and p, also become infinite, which
means that the phase shifis= arctanf;) go through a multiple ofr/2. The occurrence
of such points is inherent in the physical conditions of the problem at hand and is ir
pendent of the numerical method used for the evaluation of the corresponding cou
equations. For example, the condition numbers for the Numerov method are also large
thel =2,k=0.3 fm, « =4 f m point.

In summary, the basic difference between the finite difference and the integral el
tion method in the solution of coupled equations lies in the linear independence of
solutions needed to satisfy the appropriate asymptotic boundary conditions. The solu
obtained by a finite difference method are maximally linearly independent near the
gin, while the ones obtained from the IEM method maintain their linear independe
asymptotically, because they are based on Greens functions which contain the app
ate asymptotic, behavior. This fact also holds for the coupling between channels son
which have negative energies, as will be demonstrated in the next section. In additior
IEM, being a spectral method, has a higher inherent accuracy, than the finite differ
methods.
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FIG. 4. Condition numbers for the IEM calculation for the coupled channel case described in Fig. 2, for
angular momentum numbers.
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FIG. 5. Detail of the condition number for the case described in Fig. 4.
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5.2. One Positive and One Negative Channel Energy

Inthis case the asymptotic behavior of the wave function will be described by the const
p1 andp, according to

v (1ﬁ1> ~ (Fl(kf) +,01(31(kr))’ (55)
V2 02 €XP(—«T)

where the function§; andG; are defined in connection to (47).
This (pos-neg) case differs from the (pos-pos) energies case in three respects.

(&) The solution by the finite difference method is now more complicated becaus
requires the linear combination of five different functions: two “inside” solutions start
near the origin and integrated outwards, as described in (48), and three “outside” solu
started at the truncation radidsand integrated inwards. At some intermediate distan
these functions and their derivatives are matched to each other, leadingxta@ andtrix
for determining the appropriate linear combination of these functions. The fifth coeffici
is determined from an overall asymptotic normalization. The three outside solutions |
(upper, lower) components in the vicinity pi= T of the form(sinkr, 0), (coskr, 0), and
(0, exp(—«r)), wherek andk are the wave numbers in the positive, respectively negati
energy channels. By contrast, as explained near Eq. (17), the IEM method requires
as many different solutions as there are positive energy channels (one solution in this
channel example), because the exponentially decreasing character of the solutions
negative energy channels is automatically implemented through the appropriate beh
of the respective Green'’s functions.

(b) The solution forthe IEMis now also more complicated in thatthe Green’s functic
in each partition for the negative energy channel need to be scaled, as explained in Sec
above, so as to compensate for the large disparity of their values. The Green’s func
now include expressions si(#r) and exg—«r), which for large values of can have
very different values from each other and from the Green’s functions in the positive en
channel. Such scaling has been implemented successfully, as was tested by comp
with the analytic solution for an uncoupled negative energy channel with an exponel
potential.

(c) The large-distance behavior of the negative energy wave function can be
sensitively affected by the coupling to the positive energy wave function, even though
coupling potential is small, but not zero. Thus, the asymptotic behavidrexp is not
achieved, and henge is T-dependent, unless the coupling potential is sufficiently sma

5.2.1. Numerical example.The features described above will now be illustrated b
a numerical example with exponential potentials. The potential strength is ¥gain
5/+/2 fm~2, and the potential matrix, defined in (46) is of the form

u 1 u
(o) %) &
u v u -1
Unless stated otherwise, the coupling strength parameasezqual to 1. Numerical evalua-

tion of the asymptotic constantg andp,, for a fixed value ofl and various choices of the
partition numbeiM, was found to be stable to 13 significant figures wiven 40, for both
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TABLE |
Accuracy in p; and p,, with the Numerov Method?

k=« a=1T=25 a=4T=50
(fm™) (01, p2) C.N’ (01, p2) C.N.

0.25 9, 8) 2.8(3) (5,3) 7.3(8)
0.50 (9, 8) 1.8(3) (5, 3) 1.7(13)
0.75 (8, 6) 2.5(3) 1,2) 1.6(22)
1.00 (7,5) 1.4(3) (14,0) Overfl.
1.25 8,2) 4.5(3) (0,0) Overfl.
1.50 9,2) 8.9(7) (0,0) Overfl.

2The quantities (x, y) indicate the number of significant figures x and y for
p1 andp,, respectively, which after rounding, agree with the IEM results.

b C.N.is the condition number, the figures in parentheses are the powers of
10 by which the preceding numbers are to be multiplied.

a=1fm,andx =4 fm. An exception was the “resonance” c&ase0.25fm1, «a =4 fm,
andl =0, for which p; was stable to only 10 significant figures. The accuracy of the sol
tion obtained with the Numerov finite difference method was obtained by comparison v
the IEM results. The smallest value of the step-$ize2~7 fm employed tended to give
the most accurate results. Table | shows that the Numerov method becomes increas
inaccurate as the rangeof the potential increases, and it fails completelydoz 4 fm
andx > 1. The same is not the case with the IEM as is shown in Table II.

According to Tables | and Il, the values p$ increase drastically as increases. The
explanation can be found in the fact that the wave function in the negative energy cha
does not decrease proportional to éxpr), contrary to what is implied by (55), but it
decreases proportional to the value of the coupling potentigl-axfa). This is the case
whenever, in the negative energy channel, the coupling to the positive energy wave funi
dominates over the energy term, i.e., wkétr, < Vo1v/1. This feature will now be illustrated
by means of Figs. 6 and 7. The wave functions in the positive and negative energy char
vp and ¥y, respectively, are illustrated in Fig. 6 for the cdse0, k=« =1.2 fm™1,

TABLE Il
Values of p; and p,, Obtained with the IEM Method @

k=« a=1T=25 a=4,T=50

(fm™) 1 P2 P1 02
0.25 —0.700811(0) —0.274203(0) —0.213745(2) —0.188132(3)
0.50 —0.231030(1) —0.747343(0) 0.267050(0) 0.145771(7)
0.75 0.268109(1) —0.510719(1) 0.302913(0) 0.152607(12)
1.00 0.715728¢1) —0.272947(1) 0.305707(1) —0.543449(16)
1.25 —0.457558(0) 0.578646(3) —0.335135(0) 0.482995(22)
1.50 —0.667470(0) 0.214832(6) —0.499902(1) 0.202962(28)

2The figures in parentheses are the powers of 10 by which the preceding numbers are to be
multiplied.
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wave fctns

r (fm)

FIG. 6. Wave functions for the coupled channel case with one positive (P) and one negative (N) energ
k=« =12 fm. The exponential potential is described in Egs. (46) and (54), avithl f m~. The negative
wave function is decaying to zero, as expected.

anda =1 fm. It is clear thatyry decreases with the radial distanceThat the decrease
is proportional to exp-r /) can be seen from Fig. 7, which illustratgg multiplied by
exp(r /) for| =0 and 2 (solid lines). Even if the coupling potential is reduced by a fact
of 100, the effect still persists, as is illustrated fet O by the dashed line in Fig. 7. The
oscillatory nature of/y reflects the oscillatory nature gfp.

5.3. The Lennard-Jones Potential

The purpose of this two channel example with one positive and one negative en
respectively, is to demonstrate the performance of the IEM for a more realistic mc
calculation that captures the essence of the collision of two ultr&Soddkali atoms. It was
suggested by E. Tiesinga and is examined in more detail in a further study [18].

=
E 4
=2
O
* 0
S 2
LLI / L=0 | |
4 L ' . - ’
B 0 5 10 15 20 25

r (fm)

FIG. 7. Wave functions for the negative energy channel, for the case described in Fig. 6. In order to a
having to use a logarithmic scale, the wave functions are multipled by gxptimes an appropriate constant. The
oscillatory nature and the decay properties of the functions are due to the coupling to the positive energy ch
For the solid lines the coupling strengthn Eqg. (54) is unity; for the dashed line itis=0.01.
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The simplest multi-channel potential that describes the physics of the interaction
tween two colliding atoms is a two channel model. Taking into account that for sm
collision energies the nuclear rotation can be safely ignored, the non-rotating Hamilto
is parametrized as

{_ild_z + (\Z“(r) ée_br> - (E . >}<¢P> —0, (57)
2u dr? Ae V() E — Enr YN

where the reduced mags= M/2, Ey is the asymptotic splitting energy between the tw
channels, anc is the incident kinetic energy in the system. Thdependent diagonal
potentials of our test problem are of the Lennard—Jones ) = C1,/r12 — Cg/r6

together with an off-diagonal exchange coupling given&s®". The functionsyp and
¥ describe the wavefunction for the open and closed channel, respectively.

For two colliding ultra-cold®’S Na atoms, realistic values of the constants are [1
M = 229897680 amuCg = 1472 a.u(ap)®, C1,=38x 10f a.u.(ag)'%, A=2.9 a.u.b=
0.81173ay, andEp; = 0.2693x 10-% a.u. This choice ofy is approximately equal to the
atomic hyperfine splitting of th&S Na atom. The total enerdy= 3.1668293x 102 a.u.
corresponds to a temperature of.K. SinceE « Epy, the energy in the second channel i
negative, i.e., only one of the two channels is asymptotically accessible. In the above
stands for atomic units, aray is the Bohr radius. The conversion into entiralyunits is
achieved by multiplying the above equation hy/A?. One obtains

(anes-) )

wherer is in units ofay and the potential and energy matricksand&, respectively, are
in units of @y) 2. The conversion of a quantity in a.u. units @) 2 units is achieved
by multiplying the former by: = 22.989768x 1822888506 (a.u:)* (ag) 2. The potential
matrix is

vV U
Y= ’ , (59)
u Vv
whereV =V x p andU =U x u, and the energy matrix is
k2
e=|" ) (60)

Herek andx are the asymptotic wave numbers in each channel, givérsby/ E x 1 and

k =/ Ent x u — k2. The corresponding values dre- 3.64300422414614% 10~ (ag)*
andx =0.10623386218183%) 1. The wave function is normalized so that asymptoti
cally it becomes

(wp ) o (sin(kr) + p1 cos(kr)) , 61)
4N P2 €XP(—KT)

wherep; and p, are two elements of the real scatterikigmatrix, in terms of which the
phase shifts can be obtained.

Between 6 and 18, the diagonal potential is very deep leading to many oscillations
the wave functions, and at small distances the repulsive portion of the potential becc



COUPLED SCHRODINGER EQUATIONS 193

very large making the wave function very small. At large distances the wave functi
change very slowly because of the small values of the asymptotic wave numbers. In
to accommodate such large variations in the local wave number, a variable partition
is introduced, as is described below. In order to allow for the singularity near the origil
parameteR. is defined, and the wave functions are set to zero in the intervdtf,

A value of R;:=4.0a; is found to be satisfactory. In addition, the calculation is carrie
out to a maximum radiusRmax, beyond which all potentials are set equal to zero. In tf
calculations displayed beloiRnax= 5008,. At this distance the Lennard—Jones potentic
has the value-3.95 x 1(Tga52. However, increasing the value Bf,.x has an effect beyond

the 6th significant figure on the values@fandp,, as can be seen from the Table V. Tha
such a small potential should have such a large effect on the phase-shift is due t
small energy. This is understandable in terms of perturbation theory, in which the intec
over the tail of the potential contain a factorkl which is large at small values of the
energy.

In the version of the IEM method used for this section the (variable) size of eact
the partitions is determined in terms of two parametfdis and ¢ as follows. In each
radial region a local wave length in channels 1 and 2 is obtained Ag/R% — V (r), and

|—«2 —V (r)|. The smaller of the two local wavelengths is taken, and the size
the partition in that region is determined such that there are a given total nixrbef
Chebyshev points per local wave length. Allowing for the fact that in each partition th
are 16 Chebyshev points, the average length of a partition for a given local wave lenc
is A x 16/N L. The length of each partition is subsequently readjusted using the tolera
parametee as follows. In each partition two sets of “local” functions are calculated in terr
of which the global function) is obtained as a linear combination, as has been descrit
before. The accuracy of each of the local functions can be determined by the size o
coefficients of the highest order Chebyshev polynomials. If the relative accuracy of the |
functions in a given partition is larger thanthen that partition is divided in half, and the
testing is continued. If the initially chosen valueMt is too small, then the initial partitions
are too large, and many of the partitions are subsequently reducedbpygriterion. In this
case the final number of partitiod$ becomes larger than their initial value. If the chose
value of N L is too large, then most of the partitions are unnecessarily small, and the v:
of M is too large, leading to a larger accumulation of roundoff errors for the final values
the K-matrix elements.

In summary, for a given value ef the value ofN L was varied until the smallest number
of partitionsM was obtained. An example is given in Table I, for whiRh . is set equal
to 50(,.

From Table Ill one can find values pf = —0.3123339834 angd, = 6.576130397 which
are stable to ten significant figures. For values of the tolerametween 10° and 102 a
good compromise value fdd L =20 was found. The values & and the corresponding
accuracy ofp; are listed in Table IV for several values af

The corresponding distribution of partitions for each of the three tolerance para
ters is shown in Fig. 8. The increasingly large spacing of the partitions at the large
tances is clear from the figure. In the vicinity Bf~ 50 the density of partitions is high
because the negative energy channel has a turning point there. This means that tl
cal wave-length criterion alone would have been insufficient to determine the partif
size.

An example of the variation of the's with Ryaxis given in Table V, for whick = 107°.
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TABLE Il
Values of p1, p», and Number of Partitions M as a
Function of NL for the Tolerance e =10~°

NL M Ky K2

10 150 —0.31233398338182 6.5761303970458

20 153 —0.31233398338791 6.5761303971183

30 144 —0.31233398337104 6.5761303968390

40 154 —0.31233398338581 6.5761303970972

50 177 —0.31233398338729 6.5761303971378
TABLE IV

Accuracy for p; and Number of Partitions
M for a Given Value of the Tolerancee

€ M No. of sign. figs.
103 30 5
106 85 8
10°° 153 10
200 ——T— T
s 150
=
o
S
g 100
<&
[a
50
potsl v tsem=dsm ]
O = f | | I

0 100 200 300 400 500
radial distance (a,)

FIG. 8. Distribution of partition lengths for the Lennard—Jones cold atom collision example. This figt
illusrates the results of Table IV. The points are located at the start of each partition with the correspon
partition number along the vertical axis. The circles, diamonds, and triangles correspond respectively to an acc
parametere, equal to 10°, 107°, and 102, The corresponding number of significant figures of accuracy for th
scattering quantityp,, is indicated next to each curve. The abrupt increase in the partition density 2,
for the two upper curves is due to the local wave number in the negative channel going through zero nea
point. The logarithmic derivative of the wave function changes sign in this region.



COUPLED SCHRODINGER EQUATIONS 195

TABLE V
Dependence ofp; and p, on Rpax

P1 P2 Rmax
—.313705209 6.62005410 250
—.312333983 6.57613040 500

—.312324588 6.57555968 1000
—.312324073 6.57558157 1500
—.312323719 6.57558741 2000

6. SUMMARY AND CONCLUSIONS

In this study we have extended the integral equation method of [1] to the case of cou
equations, in which at least one channel has a positive energy. The flexible partition stru
of the one channel case is also preserved here, and so is the sparse nature of the “big” |
required to obtain the coefficientd and B. These are the coefficients which, in eacl
partition, combine the local solution¥, and Z, into the global one. The high numerical
accuracy is also maintained because the solutions in each partition are computed
a spectral type numerical method. The main difference to the uncoupled case is the
angular momentum numbets# 0, the asymptotic boundary conditions are not as easy
satisfy for the positive energy channels as for the one-channel case. The coupled int
equations now have to be solved as many times as there are open channels, eac
with a different driving term, and linear combinations between these solutions have t
implemented. However, in contrast to the solution of the coupled equations by a fi
difference method, our IEM solutions are linearly independent at large distances, an
appropriate linear combinations can be obtained without difficulty. Further, the solution
the negative energy channels automatically decay exponentially at large distances, be
of the preestablished exponential behavior of the Green’s functions. The “big” nhtrix
of the linear system of equations for the coefficieAtandB is still block tridiagonal. The
blocks, however, increase their dimension to twice the number of channels. For exan
in the case of one channel, these block matrices are of dimensidt) for two channels
they are 4x 4, etc.

The accuracy properties were exhibited by means of numerical examples involving
channels. In one set of examples the potentials (diagonal and off-diagonal) were chos
have the same exponential behavior but with different coefficients, because when the
gies in both channels are equal and wken0 an analytical solution exists for comparison
The stability of the IEM method was generally to nine significant figures. Another num
ical example for the case of the collision of two atoms at very low temperature, interac
with a long range Lennard—Jones potential was also carried out.

The differential equations can also be transformed into Volterra-type integral equati
The kernel of these equations is more singular at the origin than the kernel of the
\olterra type, used in this and in our previous study. As is shown in the first part of
Appendix numerical calculations for various examples with the Volterra type show that
singularity does not affect the numerical accuracy, in fact, in all of our experiments
obtained accuracy was as good or better than that of the original IEM. In addition, the “|
matrix in this case is entirely lower triangular, and hence the solution for the coefficie
A and B can be set up as a simple recursion which is more efficient and requires
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memory. The Volterra method is thus preferred, especially in the case of large scale sys
of coupled equations. The description of this method is given in Appendix 1.

The IEM can be easily extended to the solution of an inhomogeneous second c
differential equations. The presence of the inhomogeneousZéaryrequires minor mod-
ifications, and it does neither affect the partition structure nor the structure of the “B
matrix M, which remains exactly the same as in the homogeneous case. A descriptic
the method is presented for the uncoupled channel case in Appendix 2.

In summary, the coupled channel IEM method has good numerical stability and eas
implementation of the asymptotic boundary conditions for scattering situations. The mef
is carried out in configuration space, and hence is well suited for cases in which there
small effects which occur at large distances in the presence of many coupled chan
including the case where Coulomb potentials are present.

APPENDIXES

Here we present two relevant new developments in the single channel case. In the firs
the Fredholm integral equation is replaced by a Volterra integral equation which leads
block-triangular linear system of equations in (37), solved by a simple substitution. Af
from making the whole algorithm more efficient and accurate, it also simplifies substanti
the corresponding FORTRAN code. For the sake of simplicity we give here only a b
outline of the Volterra formulation, and its extension to the multichannel case.

The second addition shows how to treat the inhomogeneous case.

APPENDIX 1: THE VOLTERRA FORMULATION

In the single channel case our integral equation formulation of the single char
Schiodinger equation is

w(r) + %sin(kr) /rTcos(kr’)V(r’)lp(r/) dr’
+ % cogkr) /;sin(kr’)V(r’)W(r/) dr’ = sin(kr),
and can be rewritten as a \Volterra equation as
() + %cos(kr) /Orsin(kr’)V(r/)t//(r’)dr/ - %sin(kr) /orcos(kr’)V(r’)l/f(r/)dr’

T
= (1— %/ cos(kr’)V(r’W(W)dr’) sin(kr).
0

Therefore we can solve this equation instead and then scale its solution in the same w
before to match the required asymptotic behavior. Since the scaling of the right hand
is immaterial, we solve

o)+ % cos(kr)/ sinkr" YV (e (") dr’
0

- %sin(kr)/ cogkr V(e dr’ = sintkr’).
0
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We now explain the few minor modifications required for the Volterra formulation a
present results of our numerical experiments. After partitioning the interydl][hto
small subintervals, we solve in each subinterval a pair of equations,

yi(r) + %cos{kr)/ sin(kr )V ")y (r'ydr’
bi_1
— %sin(kr)/ cogkr )V (r")y, (r")dr’ = sin(kr) (62)
bl—l

and
r

zi(r)+ % cogkr) sinkkr)V (r"z (r’ydr’
bi_1

— % sin(kr)/ coskr )V "z (") dr’ = cogkr), (63)
bi_1

such that the global solution, foiin theith subinterval, is a linear combination of the loca
solutions,

V() =AY+ Bz().

The coefficientsA;, B; are found now from a simple recursion, rather than by solving
block-tridiagonal system of equations as in [A,=1, B; =0, and fork=2, ..., m,

A =1+ [(Ascyr + Biczy) + - - - + (Ak—1C¥k—1 + Br_1CZ-1)],
Bk-1 = —[(A1Sy1 + B1Sz1) + - - + (Ak—1S%k-1 + Bk-1SZ-1)].
with the notations exactly the same as in [1]. The derivation is very similar to the one

[1] and is omitted here. The discretization of the local equations (62) and (63) results ir
following linear systems of equations,

b —bi_
|:| + I27kll (DC. CSLcilDS [/ DS CSLClDCIUI):| yi =S

and

b —bi_
l:l + Izikll (DQ CSLC_IDSUi — Ds CSLC_chivi)] Z =G,

where the notation again is exactly the same as in [1].

To find the appropriate normalization constant we recall that for sufficiently ratige
solutiony (r) is a linear combination of the corresponding Riccati—-Bessel functions. So
choseT; =T andT, nearT and get

Y(T) = akR(Ty) + BGI(Ty)
Y (T2) = aFR(T2) + BG|(T).
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Therefore,

m _ [H(Tl) G|<T1)] ‘1{ wm}
B R(T») Gi(To)] v (T,

and the normalization constant is now given by

1
a—ip’

Our numerical experiments show that this method is more efficient and more acct
than the original method based on the Fredholm formulation.

In the coupled channel case we replace the integral equation (5) with the correspor
Volterra integral equation,

N, =

\Ilj(r)—l—K_lC(r)/ S(r’)V(r’)\IJj(r’)dr’—K‘ls(r)/ CaHVI ) dr =Ujr),
0 0
(64)

where the notations are the same as in the preceding sections. The restricted equatior
the form

Yi(r)+K‘1C(r)/ STHVr)Yirydr' — K‘18(r>/ CrHVI )Y (r)dr = S(r)
bi,1 bi—l
(65)

and

Zi(H+K™Cr) [ SrHVEHZirhdr —=KTiSr) [ CrHV(EHZir)dr = Cn),
bi—l bi—l
(66)

such that on théth subinterval W; (r) = Y Ax + Z B¢, where A, and By are defined as
before. The computation & andBy is much easier now, however, as they satisfy a simp
recursion,
i—1
A =g — Y [CYAc+CZHBY,
k=1
and

i—1
B = [SY%A«+ SZB].

k=1

with A; = ej andB; = 0. The minor modification of the discretizations of the local equatior
is

<| + (bi_izbiil)Kil(DCiJTQLJDSV - DSJTQLJDc\/i)>Yi =S,

and

b —bi_
<| + ('72'1)K*1(DCIJTQLJDSV - DSJTQLJDC\/)Zi =Ci.
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To find the linear combination ol (r), Wa(r), ..., ¥s(r) which satisfies the required
asymptotics, we séf; = T, chooseT, nearT, and solve

[aij } B [Fh(Tl) Gn(ﬂ)} _l|:‘pij (Tl):|

Bij F,(T2) Gy (T2) Wij (T2)

Then

R =XV + XoWy + - - - + XsWs,
where

-1

X1 011 (12---01s 1

Xo 021 Op2---02s 0

Xs Os1 Os2: - Oss 0

APPENDIX 2: SOLUTION OF THE INHOMOGENEOUS EQUATION

The equation to be solved is

S dr2

2
< d +vL<r>—k2>w(r)=I<r>, (67)

whereV_ includes the centripetal potential akds the wave number. Below we describe

a method which avoids first having to calculate the distorted Green'’s function, but ra

uses a procedure which is very similar to the one for solving the homogeneous equati
We proceed by first writing the equation in the form

d2
(dr2 + k2>w(r) =VL(OY () —Z(r)

and then transforming it into the integral form
¥ (r) = sinkr) + GoViL Y — GoZ, (68)

where Gy is the undistorted Green’s functio@?/dr? + k?)~1. Form this point on the
procedure is very similar to that of the homogeneous case. One divides the radial r
[0, T]into mpartitions pi_1, bj],i =1, 2, ..., m. In each partition one obtains three local
functionsy;, z, andA;. The first two are identical to the ones obtained for the homogenec
case (driven by the function gikr) and coskr)). They obey the equations

Opy; = sin(kr), 0iz; = cogkr),

whereQ; is the operatot — GoV,, which symbolically represents the expression given k
Eq. (3.1) of Ref. [1]. The third function is the solution of

Oi A = xi, (69)
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where

xi (1) = —(GoI)i = %cos(kr)/ sin(krZ(r") dr’
bi_1

by
+%sin(kr)/ cogkr)Z(r'ydr’. (70)

By writing out the integral oveg, in Eq. (68), one finds that
Oihi(r) = A sin(kr) + Bjcoskr) + xi(r),  bi_s <1 <,
from which it follows that
Yi() = AYi(r) + Bizi(r) + Ai(r). (71)

According to Eq. (68), the coefficieny andB; satisfy the relations

T
A=1- %/ coskr'Y(VL(tHy(r"y —Z("))dr’
b

1 bi_1
B = _E/ sinkrY(VL ()Y (r") — Z(r"))dr’.
0

Replacingy (r’) in the above expressions by Eq. (71) and decomposing the integrals |
sums over the integrals in each interval, one obtains a matrix equation for the coeffici
A andB;. By rearranging rows and columns, in a manner identical to what led to Eq. (3.
of [1], one finally obtains

(051 0 dl
oo 0 da
Ml (=] [+ | (72)
Om-1 :
m u A

where the “big” matrixM is identical to the one given for the homogeneous case, and |
vectorsuj, u, 0, andd; are

aj=<:j>; u=(é); u=(8); (73)

g = <—(CA)]+1+7/]+1>. (74)
—(SA)j_1+o0j1

Here, by definition,

by
(cA)p = i/b coskr)V(r)A(r)dr,

1 [P
(sA)p = R/ sin(kr)V (r)A(r) dr

p-1
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1 [P
Yp = R/ coskr)Z(r)dr,

bp_l

1 [
op = R/ sin(kr)Z(r) dr.

bp 1

In the above it is assumed th@iA) , =op =0 for p=0, (CA)p=yp=0for p>m.

Equations (72)—(74) are the main result of this appendix. They show that the co
cientsA; andB; have three components. One componat, andB?, is identical to the
solution of the homogeneous equation, and gives rise to the solution of the corresp
ing homogeneous Schroedinger equation, denotédl@dow. The other componem{I)
and Bi@, driven by the column containing thi’s, gives rise to a special solution of the
inhomogeneous equation.

At large distances where the potential and the inhomogeneous term go to zero, the
ficients A® — 1, A® — 0 fori ~m, while the coefficient$; approach constant values.
Hence asymptotically the main effect of the inhomogeneous term is to change the con
in front of cogkr), while at small distances the wave function changes due to the non-z
values of A", B, andA;.

Formally this result can be understood as follows. The effect of the inhomogeneous:
Z(r) is usually obtained by first defining a Green’s function which includes the distorti
due toV,, Gy = (d?/dr? — V, +k?)~1, and then applying this operator updnBy making
use of the well known relation betwe€ly andGy,

Gy = (1= GoV) G0 = (1 + D)o, (75)
where
Q= (1—GoVi) 'GoVL,
one finds that
v =F+x+Qx. (76)

Herey was defined in Eq. (68), arfélis the solution of the homogeneous equation (Eqg. (6
with Z = 0), which in the partition is given by

F=¢+9Qp=6¢0)+A”Y,(r) +B2Z 1), (77)

with ¢ =sin(kr). From Eq. (77) above one concludes ti@t); is equivalent to the nu-
merical procedure which leads m(o)Yi + Bi(o) Z;i(r). Hence the ternf2y in Eq. (76) is
equivalent to that part oAiin + Bim Z;(r) which is given by the terms due foando in
Eq. (72), and the term in Eq. (76) is due to the combination afand the termgcA) and
(sA) in Eq. (72).
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