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A new integral equation method for the numerical solution of the radial Schr¨odinger
equation in one dimension, developed by the authors (1997,J. Comput. Phys.134,
134), is extended to systems of coupled Schr¨odinger equations with both positive
and negative channel energies. The method, carried out in configuration space, is
based on the conversion of differential equations into a system of integral equa-
tions together with the application of a spectral type Clenshaw–Curtis quadrature.
An accompanying general multichannel FORTRAN code is available upon re-
quest. c© 1999 Academic Press

1. INTRODUCTION

Thispaperextendsthe techniqueforsolvingasingle channelone-dimensionalSchr¨odinger
equation presented in Gonzaleset al. [1] to coupled Schr¨odinger equations. The advantage
of solving a system of integral equations rather than differential equations is the enhanced
numerical stability. The usual disadvantage of integral equations is that the associated matri-
ces are not sparse, making the numerical method computationally “expensive,” in contrast to
differential equation techniques, which lead to sparse matrices. In our method the non-sparse
matrix difficulty is circumvented by subdividing the full interval into partitions. In each par-
tition our matrices are non-sparse, but they are of small dimension (given by the number of
support points, usually 16, in each partition, times the number of channels). The procedure
of combining the local solutions in each partition into a global solution is accomplished by
a big matrix which is sparse, however. Furthermore, since the approximation of the local
solutions in each partition is super-algebraic in accuracy (we use interpolating polynomials
at Chebyshev points), and since the local error in each partition is easily determined, our
method allows for a small overall number of discretization points, which in turn minimizes
the accumulation of round-off errors, already small for the integral equation method.

The kernel of the integral equation is obtained from Green’s functions multiplied by the
potential matrix. The former are written in terms of simple sine and cosine functions of
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the wave number in each channel times the radial distance. In the negative energy channels
the corresponding functions are made out of hyperbolic sines and decaying exponentials.
The numerical values of these latter functions can become very disparate and hence might
lead to loss of accuracy. This problem is overcome by a special scaling procedure, as is
explained in detail in the text.

Another potential difficulty consists in satisfying the asymptotic boundary conditions for
the case that the angular momentum number` 6= 0. In order to avoid having to integrate out
to distances so large that the centripetal potential,`(`+1)/r 2 is negligible, it is preferable to
integrate out only to distances where the other potentials are negligible, and there match the
solution to the appropriate Bessel or Coulomb functions. In order to achieve the boundary
conditions of outgoing waves in all channels other than the incident channel, it is necessary to
solve the coupled integral equations as many times as there are positive energy channels. We
demonstrate in this paper that the matrix which performs the appropriate linear combination
of theses solutions is well conditioned, hence the appropriate boundary conditions can be
achieved without undue loss of accuracy.

In summary, the extension of the integral equation method from one to several coupled
channels requires an examination of how to achieve the appropriate boundary conditions,
both in the positive and the negative channels, and this, together with several numerical
demonstrations, is the main content of the present paper.

Our method is expected to be well suited for situations where the potentials decay slowly
with distance, where many channels of both positive and negative energies occur, and
where high accuracy is required. An example is the description of the collision of atoms
at low incident energies, corresponding to temperatures of micro-Kelvin. This situation
occurs in the Bose–Einstein condensation of atoms, and in the photo-association of atoms
into molecules previous to the condensation of the molecules [2]. Other applications are
likely to occur for atomic or nuclear many-body systems, either confined to a lattice or
in free space in the case that the treatment of such systems can be done by the mean
field approximation (also called Hartree–Fock), which leads to systems of a non-linear
Schroedinger equation [3]. The solution usually can be achieved iteratively, by means of
inhomogeneous terms introduced into the two-body equations. As shown in the Appendix,
our system of integral equations can be easily extended to include inhomogeneous terms,
in such a way that most parts of the numerical calculations need not be repeated after
each iteration. Hence our method should be suitable for carrying out the Hartree–Fock
approximation.

The system of equations that we wish to solve is of the form

[
− d2

dr2
I + 1

r 2
L + V̄(r )

]
R(r ) = Ē R(r ), 0< r <∞, R(0) = 0, (1)

where I is the p× p identity matrix, p is the number of channels coupled to each other,
L = diag(l1(l1+1), . . . , l p(l p+1)), is the diagonal matrix of angular momentum numbers,
V̄(r ) = (vi, j (r ))

p
i, j=1 is the potential matrix,̄E = diag(k2

1, . . . , k
2
s,−k2

s+1, . . . ,−k2
p), kj >

0, j = 1, . . . , p, is the diagonal energy matrix obtained from the wave numberskj in each
channel, andR(r ) = (R1(r ), . . . , Rp(r ))T is thep-vector valued wave function to be found
at each radial distancer .

We assume here that the number of positive energy channels,s, is≥1, and thatV̄(r ) is
continuous on(0,∞) and has the following behavior at the endpoints: it tends to zero as
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fast or faster than 1/r 2, asr→∞, and asr→ 0 it does not grow faster than 1/r . Under
these conditions on̄V(r ), the initial value problem (1) has a unique bounded solution on
(0,∞) (see Faddeev [4] and references therein), satisfying the asymptotic conditions

lim
r→∞

(
R1(r )− sin

(
k1r − `1π

2

)
− ω1 exp

(
i

(
k1r − `1π

2

)))
= 0, (2)

lim
r→∞

(
Rj (r )− ω j exp

(
i

(
kj r − ` jπ

2

)))
= 0, j = 2, . . . , s, (3)

lim
r→∞(Rj (r )− ω j exp(−kj r )) = 0, j = s+ 1, . . . , p, (4)

whereω j are unknown constants uniquely determined by the problem together with the
solutionR(r ). A more detailed description of the Schr¨odinger equation and its reduction to
systems of ODEs can be found, e.g., in Landau [5] and Schiff [6].

In our treatment we replace the boundary value problem (1)–(4) with a system of coupled
integral equations, solved in the radial interval [0, T ] for s different right hand sides,

9 j (r )+ K−1S(r )

T∫
r

C(r ′)V(r ′)9 j (r
′) dr ′ + k−1C(r )

r∫
0

S(r ′)V(r ′)9 j (r
′) dr ′

= U j (r ), 0< r < T, j = 1, . . . , s, (5)

where

V(r ) = V̄(r )+ 1

r 2
L ,

K−1 = diag
(
k−1

1 , . . . , k−1
s , k−1

s+1, . . . , k
−1
p

)
,

S(r ) = diag(sin(k1r ), . . . , sin(ksr ), sinh(ks+1r ), . . . , sinh(kpr )),

C(r ) = diag(cos(k1r ), . . . , cos(ksr ), exp(−ks+1r ), . . . ,exp(−kpr ))),

and

U j (r ) = (δ1 j sin(k1r ), . . . , δs j sin(ksr ), 0, . . . ,0)
T .

Here sinh denotes the hyperbolic sine, sinh(t)= (exp(t)− exp(−t))/2, andδ is the usual
Kronecker symbol. The solution of (1)–(4) is obtained as a linear combination of91(r ), . . . ,
9s(r ) as explained in the following section.

The integral equation is discretized via a spectral type composite Clenshaw–Curtis nu-
merical quadrature. This method leads to a narrow banded linear system of equations. The
complexity of solving this system is linear in the number of support points. The latter is
achieved by using the special semiseparable structure of the kernel of the integral equation
in configuration space. In our examples we observe numerical behavior typical for spectral
methods, where after reaching a sufficient number of discretization points the error drops
rapidly to the machine precision. Due to the well-conditioning of integral equations further
increase in the number of discretization points does produce only very slow accumulation
of rounding errors.
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The paper is organized as follows. In Section 2 we derive the equivalent integral equation
formulation. In Section 3 we show that the global solution can be found as a linear combi-
nation of local solutions of integral equations restricted to small subintervals of the partition
of the whole radial interval. Each local equation is discretized using the Clenshaw–Curtis
quadrature with a very limited number of support points (16 in our implementation), as
described in Section 4. In Section 5 we describe results of our numerical experiments and
compare them with the results obtained via the Numerov, finite difference type method.

It is appropriate to clarify here that the main purpose of these experiments is to examine
numerical difficulties arising from the transition from one channel to coupled channels.
Therefore the simple Numerov method is chosen for numerical comparisons. An accuracy
comparison with a more advanced variable step size finite difference method of Raptis and
Cash was done in [1]. The additional difficulty in the multichannel case arises from combin-
ing particular solutions of the system of Schr¨odinger equations to satisfy required asymptotic
conditions and to suppress exponentially growing solutions. It is known and is further il-
lustrated in Section 5, Fig. 1, that an unlucky choice of initial guesses in finite difference
methods may lead to particular solutions which become increasingly linearly dependent,
thus causing additional loss of accuracy. Our proposed “integral equation method” (IEM)
results in well conditioned matching matrices as is illustrated with numerical examples.

In the Appendix we present two new results concerning the single channel case obtained
since [1] was published, both relevant to the coupled channel case. In the first one we
replace the general semiseparable kernel with a Volterra semiseparable kernel which leads
to a more effective algorithm, both time and memory wise. The FORTRAN code for solving
a coupled channel system of Schr¨odinger equations with at least one positive channel and
an arbitrary number of positive and negative channels is based on this Volterra approach.
The code is available now upon request and will be submitted to the journalComputer
Physics Communications. The second result is the extension of IEM to the inhomogeneous
case which occurs when part of the interaction is taken into account iteratively. Summary
and conclusions are presented before the Appendixes.

2. INTEGRAL EQUATION FORMULATION

We wish to solve the system of radial Schr¨odinger equations[
− h- 2

2m

d2

dr2
I + h- 2

2mr2
L + V(r )

]
R(r ) = E R(r ) (6)

subject to the conditions (2)–(4). Herer is the radial distance of the particle of massm to
the scattering center,E is the diagonal matrix of positive and negative energies, andL is
the diagonal matrix of angular momentum numbers as defined in the Introduction.V is the
matrix of diagonal and coupling potentials andh- is Planck’s constant divided by 2π . With
Ē = (2m/h- 2)E, we can write (6) as[

d2

dr2
I + Ē

]
R`(r ) = V(r )R`(r ), (7)

whereV(r ) = L/r 2+ V̄(r ) andV̄(r ) = (2m/h-2)V(r ).
The following proposition shows that the solution of this system of differential equations

also satisfies the system of integral equations (5). It is assumed thatT is chosen sufficiently
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large such that the potential̄V(r ) and the decaying solutions in negative energy channels
times their respective coupling potentials are numerically negligible forr ≥ T . In the propo-
sition, the symboli in the exponentials in Eqs. (9) and (10) denotes

√−1, not to be confused
with the indexi = 1, . . . , s subsequentially used throughout the paper.

PROPOSITION1. Let R(i )(r ), i = 1, . . . , s, be the unique solutions of the coupled system
of Schr̈odinger equations,[

d2

dr2
I + K

]
R(i )(r ) = V(r )R(i )(r ), 0< r <∞, R(i )(0) = 0, (8)

satisfying the asymptotic conditions,

lim
r→∞

(
R(i )i (r )− sin

(
ki r − `iπ

2

)
− ω(i )i exp

(
i

(
ki r − `iπ

2

)))
= 0, (9)

lim
r→∞

(
R(i )j (r )− ω(i )j exp

(
i

(
kj r − ` jπ

2

)))
= 0, j = 1, . . . , s, j 6= i, (10)

lim
r→∞

(
R(i )j (r )− ω(i )j exp(−kj r )

) = 0, j = s+ 1, . . . , p, (11)

where R(i )j (r ) denotes the j th component of the solution R(i ). Let

8(i )(r ) =



sin(k1r )R
(i )
1 (r )+ 1

k1
cos(k1r )R

(i )′
1 (r )

...

sin(ksr )R(i )s (r )+ 1
ks

cos(ksr )R(i )
′

s (r )

exp(−ks+1r )
(
R(i )s+1(r )+ 1

ks+1
R(i )

′
s+1(r )

)
...

exp(−kpr )
(
R(i )p (r )+ 1

kp
R(i )

′
p (r )

)


, 0< r <∞. (12)

Then the system of integral equations

9i (r )+ K−1S(r )

T∫
r

C(r ′)V(r ′)9i (r
′) dr ′ + K−1C(r )

r∫
0

S(r ′)V(r ′)9i (r
′) dr ′

= S(r )8(i )(T), 0< r < T, (13)

has a solution9i = R(i ). Conversely, a solution of the system of integral equations

9(r )+ K−1S(r )

T∫
r

C(r ′)V(r ′)9(r ′) dr ′ + K−1C(r )

r∫
0

S(r ′)V(r ′)9(r ′) dr ′

= S(r )

 α1
...

αp

, 0< r < T, (14)

satisfies(8) for any choice of constantsα1, . . . , αp.
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Proof. Since for r close toT the system (8) decouples intop independent Bessel
equations it follows thatR(1), . . . , R(s) are linearly independentp-vector valued functions
on [0,T ].

Let R(i ) satisfy (8)–(11) and consider

µ(i )(r ) = R(i )(r )+ K−1S(r )

T∫
r

C(r ′)V(r ′)R(i )(r ′) dr ′

+ K−1C(r )

r∫
0

S(r ′)V(r ′)R(i )(r ′) dr ′, 0< r < T.

Differentiating we get

µ(i )
′
(r ) = R(i )

′
(r )+ C̄(r )

T∫
r

C(r ′)V(r ′)R(i )(r ′) dr ′

− S̄(r )

r∫
0

S(r ′)V(r ′)R(i )(r ′) dr ′, 0< r < T,

where S̄(r )= diag(sin(k1r ), . . . , sin(ksr ), exp(−ks+1r ), . . . ,exp(−kpr )) and C̄(r )=
diag(cos(k1r ), . . . , cos(ksr ), cosh(ks+1r ), . . . , cosh(kpr )). Differentiating one more time
and using (7) we obtain

µ(i )
′′
(r ) = −Ēµ(i )(r ).

Thus,µ(i )(r )= S(r )(α1, . . . , αp)
T +C(r )(β1, . . . , βp)

T . Sinceµ(i )(0) = 0 it follows that
µ(i )(r ) = S(r )(α1, . . . , αp)

T . To findα1, . . . , αp, multiply µ(i )(T) by

Kdiag(sin(k1T), . . . , sin(ksT), 1, . . . ,1),

multiply µ(i )
′
(T) by

diag(cos(k1T), . . . , cos(ksT), 1, . . . ,1)

and add to get  α1
...

αp

 = 8(i )(T).

Conversely, if9(r ) is a solution of (14) then it is clear that9(0)= 0 and differentiating (13)
twice it is easy to see that9(r ) satisfies the differential equation as well. The proposition
is proved. j

Note that since for sufficiently largeT the components of the solutionR(i ) corresponding
to the negative energy channels,j = s+ 1, . . . , p are negligibly small, it follows from
substitutingR(i ) for9i into (13) that the corresponding components in the left hand side of
(13) and hence the corresponding components in the right hand side of (13), namely,

exp(−kj T)

(
R(i )p (T)+

1

kj
R(i )

′
j (T)

)
sinh(kj r ), j = s+ 1, . . . , p,
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are also negligibly small. Therefore in our practical implementation we set them to zero.
We also assume that the vectors

8
(i )
0 (T) =


sin(k1T)R(i )1 (T)+ 1

k1
cos(k1T)R(i )

′
1 (T)

...

sin(ksT)R(i )s (T)+ 1
ks

cos(ksT)R(i )
′

s (T)

 , i = 1, . . . , s,

are linearly independent. Therefore we chose the natural coordinate basis for the span
of 8(1)

0 (T), . . . , 8
(s)
0 (T) and instead of solving Eq. (14) withαi given by8i , we solve

numerically for j = 1, . . . , s the following systems of integral equations,

9 j (r )+ K−1S(r )

T∫
r

C(r ′)V(r ′)9 j (r
′) dr ′ + K−1C(r )

T∫
r

S(r ′)V(r ′)9 j (r
′) dr ′

= U j (r ), 0< r < T, j = 1, . . . , s, (15)

whereUj is as defined in (5). The quantities9 j , j = 1, . . . , s, are column vectors of lengthp.
However, none of them obey the desired boundary condition (2)–(4), unlessL = 0 andj = 1.
In the general case the boundary conditions (2)–(4) are achieved through an appropriate
linear combination of91, . . . , 9s as explained below. We do not anticipate numerical
difficulties in the case whenT is nearT0 for which 8(1)

0 (T0), . . . , 8
(s)
0 (T0) are linearly

dependent. In this case, the computed9 j (r ) become large, but retain high relative accuracy.
This is because the solutions of the homogeneous equation (14) with zeros in the right hand
side also satisfy (8). It is similar to the case of the inverse iteration algorithm for computing
eigenvectors, where one solves a nearly singular linear system of equations, for which the
solution is an approximate eigenvector, see Golub and Van Loan [11, Sect. 7.6].

Next we show how to findR(r ) = R(1)(r ) in terms of91, . . . , 9s. Forr ≈ T the system
(1)–(4) decouples into independent Riccati–Bessel equations for the components of the
vectorR,

[
d2

dr2
− `i (`i + 1)

r 2
+ k2

i

]
Ri (r ) = 0, i = 1, . . . , s,

and similar equations fori = s+ 1, . . . , p. Each of the firsts equations has a pair of linearly
independent solutions, the Riccati–Bessel functions,

Fli (r ) = z jli (z) =
√
πz

2
Jli+ 1

2
(z)

and

Gli (r ) = −zyli (z) = −
√
πz

2
Yli+ 1

2
(z),

wherez = ki r (cf. Abramovitz and Stegun [12]). Since nearT the functions91, . . . , 9s
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satisfy this decoupled system of Riccati–Bessel equations, it follows that91 j (r )
...

9s j(r )

 =

αi j Fl1(r )+ β1 j Gl1(r )

...

αs j Fls(r )+ βs jGls(r )

 .
To findαi j andβi j differentiate

9i j (r ) = αi j Fli (r )+ βi j Gli (r )

in r to get

9 ′i j (r ) = αi j F ′l i (r )+ βi j G
′
l i (r ).

Multiply the first equation byG′l i (r ) and the second byGli (r ), subtract and substituter = T
to get

αi j =
9i j (T)G′l i (T)−9 ′i j (T)Gli (T)

Fli (T)G
′
l i (T)− F ′l i (T)Gli (T)

(16)

and in a similar way,

βi j = −
9i j (T)F ′l i (T)−9 ′i j (T)Fli (T)

Fli (T)G
′
l i (T)− F ′l i (T)Gli (T)

. (17)

Asymptotically, the Riccati–Bessel functionsF`(r ) andG`(r ) behave like sin(kr− `π
2 ) and

cos(kr − `π
2 ), respectively. Under our assumptionsR(r ) is a unique linear combination of

91, . . . , 9s,

R= x191+ · · · + xs9s.

Therefore it follows from (2) and (3) that asymptotically this linear combination behaves
as

s∑
j=1

xj


α1 j Fl1(r )+ β1 j Gl1(r )

...

αs j Fls(r )+ βs jGls(r )

 = s∑
j=1

xj


α1 j sin

(
k1r − `1π

2

)+ β1 j cos
(
k1r − `1π

2

)
...

αs j sin
(
ksr − `sπ

2

)+ βs j cos
(
ksr − `sπ

2

)


while our desired solution behaves as
sin
(
k1r − `1π

2

)+ ω1
(

cos
(
k1r − `1π

2

)+ i sin
(
k1r − `1π

2

))
...

ωs
(

cos
(
ksr − `sπ

2

)+ i sin
(
ksr − `sπ

2

))


=


(1+ iω1) sin

(
k1r − `1π

2

)+ ω1 cos
(
k1r − `1π

2

)
...

iωs sin
(
ksr − `sπ

2

)+ ωs cos
(
ksr − `sπ

2

)
 .
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Comparing the entries in the first position we get

s∑
j=1

α1 j x j = 1+ iω1,

s∑
j=1

β1 j x j = ω1.

Excludingω1, we obtain

s∑
j=1

α1 j x j − i
s∑

j=1

β1 j x j = 1.

In a similar way, excludingω2, . . . , ωs from equations corresponding to positions 2 tos we
obtain the following linear system of equations forx1, . . . , xs,α11− iβ11 · · · α1s − iβ1s

...
...

...

αs1− iβs1 · · · αss− iβss


 x1
...

xs

 =
1
...

0

. (18)

The asymptotic constantsω1, . . . , ωs are now given byω1
...

ωs

 =
β11 · · · β1s
...

...
...

βs1 · · · βss


 x1
...

xs

. (19)

The asymptotic constantsωs+1, . . . , ωp can be found in a similar way; they usually are,
however, of little interest to physicists.

We remark that instead of matching to (2) and (3), one can match to the following
asymptotic condition,δ1 j sin(ki r − l iπ/2)+ρi cos(ki r − l iπ/2), i = 1, . . . , s. Here theρi ’s
are elements of the so-called scatteringK -matrix, while theω’s are elements of theÄ-matrix,
with Ä=−2K (1− i K )−1, which is related to the scatteringS-matrix via S= I − iÄ. In
this case there is no need for complex arithmetic. The only change is that instead of (18)
we solve α11 · · · α1s

...
...

...

αs1 · · · αss


 x1
...

xs

 =
1
...

0

 (20)

and obtainp1, . . . , ps from (19) instead ofω1, . . . , ωs. We remark that the coefficient
matrix in (20) can become singular, as opposed to (18). This means that the phase shifts
φi = arctan(ρi ) go through multiples ofπ/2, which is of some interest to physicists. For
our numerical applications we implemented (20) rather than (18) and, in fact, detected a
particular case of largeρi as reported in Section 5 below. Largeρi had no visible ill effect
on the overall accuracy of computation.

The summary of our general algorithm is as follows.

1. Solve (15) forj = 1, . . . , s.
2. Computeαi j andβi j , i, j = 1, . . . , s, from (16) and (17).
3. Solve (20) and computeρ1, . . . , ρs from (19).
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In our numerical implementation described below, the functions9 j (r ) are found as
piecewise polynomials at Chebyshev support points. The values of their derivatives at
r = T are obtained by differentiating the integral equations (15) and substitutingr = T . The
values of Riccati–Bessel functions and their derivatives are readily available from recursive
relations satisfied by these functions, or from a scientific subroutine library.

3. LOCAL SOLUTIONS

To avoid notational complexity we do not use special symbols to distinguish vectors
from matrices. Instead we alert the reader that the quantities9, A, B, e are vectors, and
K−1,V,C, S,Y, Z,M, I , E (and their products) are matrices.

Because of the semiseparable structure of the kernel of the integral equation (15), the
Clenshaw–Curtis quadrature, which gives at no extra cost the whole anti-derivative function,
is for our purposes the most appropriate method for discretizing (15). This quadrature is
based on the interpolation of the integrand with a polynomial at Chebyshev support points.
Since the length of the interval of integration,T , may require many support points, and in or-
der to avoid working with high degree polynomials, we use the composite Clenshaw–Curtis
quadrature suggested by Greengard and Rokhlin [9], by partitioning [0, T ] into sufficiently
small subintervals. The second and equally important reason for partitioning the interval
[0, T ] into smaller size subintervals and restricting the integral equation to each of them is
that in the negative energy channels,k= s+1, . . . , p, the kernel contains an exponentially
growing component sinh(kr). This component can be scaled down on subintervals of parti-
tion as will be explained after Eq. (34) below. A third important reason is that the procedure
of obtaining the global solution9 out of the local solutions in each partition leads to a
narrow banded matrix, whose inversion only requires an effort proportional to the number
of partitions. The procedure will now be described.

Each partition will be denoted by the subscripti , i = 1, . . . ,m. For the sake of notational
simplicity, we omit from now on the indexj in Yi andZi and in other quantities, such as
Ai andBi below, whenever it does not cause any ambiguity.

Consider the family of restricted integrad equations in each partition,i , for two matrix
valued functions,Y(r ) andZ(r ),

Yi (r )+ K−1S(r )

bi∫
r

C(r ′)V(r ′)Yi (r
′) dr ′ + K−1C(r )

r∫
bi−1

S(r ′)V(r ′)Yi (r
′) dr ′

= S(r ), bi−1 ≤ r ≤ bi , (21)

and

Zi (r )+ K−1S(r )

bi∫
r

C(r ′)V(r ′)Zi (r
′) dr ′ + K−1C(r )

r∫
bi−1

S(r ′)V(r ′)Zi (r
′) dr ′

= C(r ), bi−1 ≤ r ≤ bi , (22)

respectively. Hereb0= 0< b1 < · · · < bm−1 < bm = T is some partitioning of the interval
[0, T ]. Each column of the matricesY andZ corresponds to a local solution of the coupled
Eq. (15), defined entirely in partitioni , and “driven” by the corresponding column in the
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matrix Sor C, respectively. For a sufficiently fine partitioning, these equations have unique
solutionsYi and Zi , which arep× p matrix valued functions. We now observe that the
global solution9 j (r ) of (15) on [bi−1, bi ] is a linear combination ofYi andZi . Indeed, it
follows from (15) that forbi−1≤ r ≤ bi ,

9 j (r )+ K−1S(r )

bi∫
r

C(r ′)V(r ′)9 j (r
′) dr ′ + K−1C(r )

r∫
bi−1

S(r ′)V(r ′)9 j (r
′) dr ′

= S(r )

ej − K−1

T∫
bi

C(r ′)V(r ′)9 j (r
′) dr ′



+C(r )

−K−1

bi−1∫
0

S(r ′)V(r ′)9 j (r
′) dr ′

, (23)

whereej denotes the unit coordinate vector with 1 in thej th position. Fori = 1, . . . ,m, let
the quantities in parentheses be denoted by

Ai = ej − K−1

T∫
bi

C(r ′)V(r ′)9 j (r
′) dr ′ (24)

and

Bi = −K−1

bi−1∫
0

S(r ′)V(r ′)9 j (r
′) dr ′. (25)

It follows from (21) and (22) thatYi Ai + Zi Bi satisfies (23) and hence

9 j (r ) = Yi Ai + Zi Bi , bi−1 ≤ r ≤ bi .

Assuming thatYi and Zi are known, we show now how to findAi and Bi . Let us rewrite
(24) as

Ai = ej − K−1
m∑

q=i+1

bq∫
bq−1

C(r ′)V(r ′)9 j (r
′) dr ′.

Since on [bq−1, bq], 9 j = Yq Aq + Zq Bq, we can also write

Ai = ej −
m∑

q=i+1

(CYq)Aq −
m∑

q=i+1

(C Zq)Bq, (26)

where, by definition,

(CYq) = K−1

bq∫
bq−1

C(r ′)V(r ′)Yq(r
′) dr ′, (27)



COUPLED SCHR̈ODINGER EQUATIONS 171

and

(C Zq) = K−1

bq∫
bq−1

C(r ′)V(r ′)Zq(r
′) dr ′. (28)

Similarly,

Bi = −
i−1∑
q=1

(SYq)Aq −
i−1∑
q=1

(SZq)Bq, (29)

with the p× p matrices(SYq) and(SZq) given in each partition by

(SYq) = K−1

bq∫
bq−1

S(r ′)V(r ′)Yq(r
′) dr ′ (30)

and

(SZq) = K−1

bq∫
bq−1

S(r ′)V(r ′)Zq(r
′) dr ′. (31)

Note thatAm= ej and B1= 0. Combining (26) and (29) fori = 1, . . . ,m, we obtain the
following system of linear equations for theAi ’s andBi ’s,

(
311 312

321 322

)


A1

A2
...

Am

B1

B2
...

Bm


=



ej

ej
...

ej

0
0
...

0


, (32)

where

311 =



I CY2 CY3 · · · CYm

I CY3 · · · CYm

I
. . . CYm
. . . CYm

0 I

 ,

312 =



0 C Z2 C Z3 · · · C Zm

0 C Z3 · · · C Zm

0
. . . C Zm
. . . C Zm

0 0

 ,



172 GONZALES ET AL.

321 =


0 0

SY1
. . .

SY1
. . . 0

SY1 · · · SYm−2 0

SY1 · · · SYm−2 SYm−1 0

 ,

and

322 =


I 0

SZ1
. . .

SZ1
. . . I

SZ1 · · · SZm−2 I

SZ1 · · · SZm−2 SZm−1 I

 .

For notational convenience we henceforth omit the parentheses in definitions (27), (28),
(30), and (31). The system of linear equations (32) has a unique solution because otherwise
(15) would not be uniquely solvable. Using elementary row operations (e.g., subtracting
the second row from the first, then the third row from the second, etc.) Eq. (32) can be
transformed into a sparse system,

(
611 612

621 622

)


A1

A2
...

Am

B1

B2
...

Bm


=



0
0
...

0
ej

0
0
...

0


,

where

611 =


I CY2− I 0

I CY3− I
I

. . .

. . . CYm − I

0 I

 ,

612 =


0 C Z2 0

0 C Z3

0
. . .
. . . C Zm

0 0

 ,
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621 =


0 0

SY1
. . .
. . . 0

SYm−2 0

0 SYm−1 0.

 ,

and

622 =


I 0

SZ1− I
. . .
. . . I

SZm−2− I I

0 SZm−1− I I

 .

In a compact form we rewrite this equation as

LA = F. (33)

Changing the order of the varibles, we can finally transform the coefficient matrix into the
block tridiagonal system,



I M 12 0

M21 I M 23

M32
. . .

. . .

. . . I M m−1,m

0 Mm,m−1 I





A1

B1

A2

B2
...

Am

Bm


=



0
0
...

0
ej

0


, (34)

where each block is a 2p× 2p matrix and with

M i−1,i =
(

CYi − I C Zi

0 0

)
, i = 2, . . . ,m,

and

M i,i−1 =
(

0 0
SYi−1 SZi−1− I

)
, i = 2, . . . ,m.

The coefficient matrix in (34) is narrow banded and therefore, the Gaussian elimination
with partial pivoting (see [11, Sect. 5.3]) can be used at the expense ofO(m) arithmetic
operations only to solve (34).

Although Eq. (34) is theoretically correct, numerically it is feasible only in the case
when all channels have positive energies, that is, whenp= s. A scaling procedure for
negative channels will now be described. The corresponding numerical algorithm will be
presented in Subsection 4.1. Suppose that channell is a negative energy channel. Then the
l th component ofYi is of the size of exp(kl bi ) which can be very large fori close tom,
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while the l th component ofZi becomes very small, of the size of exp(−kl bi ). In order
to balance the size of computed quantities, the following scaling is introduced in negative
energy channels. LetEi denote the scaling diagonal matrices

Ei = diag(1, . . . ,1, exp(−ks+1bi ), . . . ,exp(−kpbi )), i = 1, . . . ,m,

and redefine

yi = Yi Ei , zi = Zi E
−1
i , ai = E−1

i Ai , bi = Ei Bi ,

with the result that in thei th subinterval Eq. (25) now reads

9 j = yi ai + zi bi .

Next introduce the global 2mp× 2mpscaling diagonal matrix

E = diag
(
E1, . . . , Em, E−1

1 , . . . , E−1
m

)
and the scaled versions ofS(r ) andC(r ),

c(r ) = E−1
i C(r ), s(r ) = Ei S(r ), r ∈ [bi−1, bi ].

With this notation in place, the local equations (21) and (22) become

yi (r )+ K−1s(r )

bi∫
r

c(r ′)V(r ′)yi (r
′) dr ′ + K−1c(r )

r∫
bi−1

s(r ′)V(r ′)yi (r
′) dr ′

= s(r ), bi−1 ≤ r ≤ bi , (35)

and

zi (r )+ K−1s(r )

bi∫
r

c(r ′)V(r ′)zi (r
′) dr ′ + K−1c(r )

r∫
bi−1

s(r ′)V(r ′)zi (r
′) dr ′

= c(r ), bi−1 ≤ r ≤ bi . (36)

Note that the matricesE, S,C, andK−1 are all diagonal and therefore commute with each
other. Also note that the entries inc ands, and hence inyi andzi , are now of an ordinary
size.

The inner products (27), (28), (30), and (31) are changed exactly in the same way, with
C, S,Yq, andZq replaced by the corresponding lower case. Equation (33) can be rewritten
as

E−1LE E−1A = E−1F,
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or in more detail,

(
λ11 λ12

λ21 λ22

)


a1

a2
...

am

b1

b2
...

bm


=



0
0
...

0
ej

0
0
...

0


,

where

λ11 =



I E−1
1 E2(cy2− I ) 0

I E−1
2 E3(cy3− I )

I
. . .
. . . E−1

m−1Em(cym − I )

0 I


,

λ12 =



0 E−1
1 E2(cz2) 0

0 E−1
2 E3(cz3)

0
. . .
. . . E−1

m−1Em(czm)

0 0


,

λ21 =



0 0

E2E−1
1 (sy1)

. . .

. . . 0

Em−2E−1
m−3(sym−2) 0

0 Em−1E−1
m−2(sym−1) 0.

 ,

and

λ22 =



I 0

E2E−1
1 (sz1− I )

. . .

. . . I

Em−2E−1
m−3(szm−2− I ) I

0 Em−1E−1
m−2(szm−1− I ) I

 .

Note that the entries inE−1
i Ei+1 andEi E

−1
i−1 are also of an ordinary size. Again changing

order of variables we transform it into a banded block tridiagonal system
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I m12 0

m21 I m23

m32
. . .

. . .
. . . I mm−1,m

0 mm,m−1 I





a1

b1

a2

b2
...

am

bm


=



0
0
...

0
ej

0


, (37)

where

mi−1,i =
(

cyi − I czi

0 0

)
, i = 2, . . . ,m,

and

mi,i−1 =
(

0 0
syi−1 szi−1− I

)
, i = 2, . . .m.

4. DISCRETIZATION OF LOCAL EQUATIONS

Although the discretization procedure described below is similar to the one in [1], but
because of the added notational complexity, we repeat the main steps of this discretization
for the reader’s convenience.

In this section we describe the numerical technique for discretizing the local equations
(21) and (22), which is a generalization to the multi-channel case of Section 4 in [1].
It is based on the Clenshaw–Curtis quadrature which is well suited for computing anti-
derivatives and hence for discretizing integrals present in (21) and (22). Assumef (r ) is a
function given in the interval [−1, 1] and define

F(r ) =
r∫
−1

f (r ′) dr ′, −1≤ r ≤ 1.

Further, assume thatf (r ) can be expanded in a finite set of Chebyshev polynomials, i.e.,

f (r ) =
n∑

j=0

α j Tj (r ), −1≤ r ≤ 1, (38)

where

Tj (r ) = cos( j arccos(r )), j = 0, 1, . . . ,n,

are the Chebyshev polynomials. Clenshaw and Curtis [8] showed that if

F(r ) =
n+1∑
j=0

β j Tj (r ),
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then

[β0, β1, . . . , βn]T = SL [α0, α1, . . . , αn]T ,

where

SL =



1 1 −1 1 · · · (−1)(n+1)

1 0

1
1

. . .

0 1





0 0
1 0 − 1

2

1
4 0 − 1

4

1
6

. . .
. . .

. . . 0 − 1
2(n−1)

0 1
2n 0


is the so-called left spectral integration matrix. Here [ν]T denotes the transpose of the
column vectorν. Similarly, if

F̃(r ) =
1∫

r

f (r ′) dr ′ =
n+1∑
j=0

β̃ j Tj (r ),

then

[β̃0, β̃1, . . . , β̃n]T = SR[α0, α1, . . . , αn]T ,

where the right spectral integration matrix is given by

SR =


1 · · · 1
−1 0
−1

. . .

0 −1





0 0
1 0 − 1

2

1
4 0 − 1

4

1
6

. . .
. . .

. . . 0 − 1
2(n−1)

0 1
2n 0


.

SinceTj (1)= 1 for all j , we also have that

F(1) =
1∫
−1

f (r ′) dr ′ =
n+1∑
j=0

β j . (39)

Using (38) one can find the Chebyshev–Fourier coefficients,α j , of f (r ) as follows. Let
τk, k= 0, . . . ,n, denote the zeros ofTn+1 viz.,

τk = cos
(2k+ 1)π

2(n+ 1)
,
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so that

Tj (τk) = cos
(2k+ 1) jπ

2(n+ 1)
, k, j = 0, . . . ,n.

Substitutingr = τk, k= 0, . . . ,n, into (38), we obtain that f (τ0)
...

f (τn)

 = C

α0
...

αn

,
whereC is a discrete cosine transform matrix whose elements are specified by

Ck j = Tj (τk), k, j = 0, . . . ,n.

The matrixC has orthogonal columns, that is,

CTC = diag

(
n,

n

2
, . . . ,

n

2

)
.

Therefore,

C−1 = diag

(
1

n
,

2

n
, . . . ,

2

n

)
CT .

Moreover, the matrixC (as well asCT andC−1) can be applied to a vector at the cost of
O(n logn) arithmetic operations. These and other properties of discrete cosine transforms
can be found in C. Van Loan [13]. Thus the vector

[α0, α1, . . . , αn]T = C−1[ f (τ0), f (τ1), . . . , f (τn)]
T

can be easily found from values off at τ0, . . . , τn. In particular,F(τ0)
...

F(τn)

 = CSLC−1

 f (τ0)
...

f (τn)

 (40)

and, similarly, F̃(τ0)
...

F̃(τn)

 = CSRC−1

 f (τ0)
...

f (τn)

 . (41)

We remark that in writing the equality sign in (40) and (41), we assume thatβn+1 is
set to zero. This is an acceptable assumption becausef (r ) is itself only approximately
represented by the polynomial in (38) and the overall accuracy of approximation is not
affected.
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The formulas (40) and (41) can be generalized for intervals [bi−1, bi ] other than [−1, 1]
by the linear change of variable

hi (t) = 1

2
(bi − bi−1)t + 1

2
(bi + bi−1).

Thus if

τ
(i )
j = hi (τ j ), j = 0, . . . ,n

then 
F
(
τ
(i )
0

)
...

F
(
τ (i )n

)
 = (bi − bi−1)

2
CSLC−1


f
(
τ
(i )
0

)
...

f
(
τ (i )n

)
 (42)

and, similarly, 
F̃
(
τ
(i )
0

)
...

F̃
(
τ (i )n

)
 = (bi − bi−1)

2
CSRC−1


f
(
τ
(i )
0

)
...

f
(
τ (i )n

)
 . (43)

Using (40) and (41) we can now discretize the local equations (21) and (22) as follows. Let
J denote the(n+ 1)p× (n+ 1)p permutation matrix which transforms a vector

(a11, . . . ,ap1,a12, . . . ,ap2, . . . ,a1m, . . . ,ap,n+1)
T

into the vector

(a11,a12, . . . ,a1,n+1,a21,a22, . . . ,a2,n+1,ap1,ap2, . . . ,ap,n+1)
T .

Let us also denote

Y i =

Yi
(
τ
(i )
0

)
...

Yi
(
τ (i )n

)
, Si =

S
(
τ
(i )
0

)
...

S
(
τ (i )n

)
,

and similarlyZ i andCi .
Let us also introduce the following block diagonal matrices withn+ 1 blocks of the same

size,p× p,

QL = diag
(
CSLC−1, . . . ,CSLC−1

)
,

QR = diag
(
CSRC−1, . . . ,CSRC−1

)
,

DSi = diag
(
S
(
τ
(i )
0

)
, . . . , S

(
τ (i )n

))
,

and similarly,DCi ,DCVi ,DSVi , and finallyK−1= diag(K−1, . . . , K−1).
In particular, the productJDSVi Y i rearranges the entries ofDSVi Y i in such a way that

block by block application ofCSLC−1 transforms the values ofDSVi Y i into values of its
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anti-derivative, which are returned to the original ordering by the application ofJT . With
this notation in place we can discretize now (21) as(

I + (bi − bi−1)

2
K−1

(
DSi J

TQRJDCVi + DCi J
TQLJDSVi

))
Y i = Si , (44)

and similarly for (22) we have(
I + (bi − bi−1)

2
K−1

(
DSi J

TQRJDCVi + DCi J
TQLJDSVi

))
Z i = Ci , (45)

whereI is the identity matrix of an appropriate size. The solution of (44) and (45) can
be done using standard software, e.g., Gaussian elimination with partial pivoting at the
cost of O(n3) arithmetic operations. The solutionsY i andZ i give approximate values to
the local functionsYi (r ) and Zi (r ) at the Chebyshev nodes in each of the subintervals
[bi−1, bi ], i = 1, . . . ,m. The inner products (27), (28), (30), and (31) can now be obtained
using (39) as follows. Let

RL = diag
(
SLC−1, . . . ,SLC−1

)
,

then

(CYi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDCVi Y i ,

(C Zi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDCVi Z i ,

(SYi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDSVi Y i ,

(SZi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDSVi Z i ,

where 1k is a p× (n+ 1) matrix whose row numberk equals [1, . . . ,1], while the rest are
zeros. The solution of the scaled problem is computed in very much the same way.

The computation of each of the above inner products takesO(p(n+ 1)) arithmetic op-
erations after [11, 12, . . . , l p]RL is precomputed at the cost ofO((n+ 1)3) flops and is
negligible relative to the cost of solving (44) and (45). These inner products are substituted
into (34) and the weightsAi , Bi are obtained at the cost ofO(pm) arithmetic operations.
The coefficient inO(m) is of order unity and hence much smaller than(p(n+ 1))3 in
O((p(n+ 1))3m) needed to computeY i ,Z i , i = 1, . . . ,m. Thus the overall cost of the
computation is dominated by theO((p(n+1))3m) cost of solving local equations (44) and
(45). The cost of solving local equations can be reduced by the use of parallel processors
since the calculation ofY i andZ i on each subinterval is independent.

Using the sparseness ofSL andSR and the fast implementation of the discrete cosine
transform, one may also try to reduce the cost of solving (44) and (45) by the use of iterative
algorithms.

After Ai andBi are found we finally obtain
9 j
(
τ
(i )
0

)
...

9 j
(
τ (i )n

)
 ≈ Y i Ai + Z i Bi .



COUPLED SCHR̈ODINGER EQUATIONS 181

To estimate the accuracy of approximation, we use the following property of Chebyshev
expansions:

PROPOSITION2. Let f ∈Cp[−1, 1], p> 1, and

f (r ) =
∞∑
j=0

α j Tj (r ), −1≤ r ≤ 1.

Then

|α j | ≤
 2

π

π∫
0

∣∣∣∣ dp

dθ p
f (cosθ)

∣∣∣∣ dθ
 1

j p
= c

j p

and ∣∣∣∣ f (r )−
n∑

j=0

α j Tj (r )

∣∣∣∣ ≤ c

p− 1

1

np−1
.

The proof of this proposition is outlined in [10, p. 29]. It implies that iff (r ) is analytic
then the convergence of the Chebyshev expansion is super-linear.

Using this proposition, one can show, see [9], that fori = 1, . . . ,m,∥∥∥∥∥∥∥
9 j

(
τ
(i )
0

)
...

9 j
(
τ (i )n

)
− (Y i Ai + Z i Bi )

∥∥∥∥∥∥∥
∞

≤ Cp

np
,

whereCp is a constant which depends onp only, provided thatV(r ) is continuously differ-
entiablep times for 0< r <∞.

This spectral type high accuracy of approximation of9 j with Y i Ai +Z i Bi , for modest
values ofn, was illustrated for the uncoupled channel case in [1], and will be further illus-
trated with numerical examples in the next section. The high accuracy of approximation
here is due to the special feature of Clenshaw–Curtis quadrature: the highly accurate com-
putation of the antiderivative. Since the kernel of the integral equations (21) and (22) is not
smooth across the diagonal{r = r ′}, the standard Nystrom type discretization methods will
fail to give high accuracy in this case (see, e.g., L. M. Delves and J. L. Mohamed [14]).

Finally, we remark that the values of9 j are found inside each of the subintervals of
partition at Chebyshev nodesτ (i )0 , . . . , τ (i )n . The value of9 j at T (or any other point in
[0, T ], for that matter) can be found as follows. UsingC−1 we can find Chebyshev–Fourier
coefficients in [bi−1, bi ], α

(i )
0
...

α(i )n

 = C−1

9 j
(
τ
(i )
0

)
...

9 j
(
τ (i )n

)
 .

Thus,

9 j (r ) =
n∑

k=0

α
(i )
k Tk(hi (r )), bi−1 ≤ r ≤ bi .

The value of9 j (r ) (or 9 ′j (r )) for r 6= τ (i )l can be found using the recursion satisfied by
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Chebyshev polynomials,

Tk+1(x) = 2xTk(x)− Tk−1(x).

In fact, we have used a backward (numerically more reliable) recursion suggested in [8].

4.1. The Scaled Algorithm

Here we outline in a pseudocode our algorithm for the scaled version of local equations
(35) and (36).

For j = 1, . . . ,m,
For i = 1, . . . , s,

Solve discretizations of (35) and (36),(
I + (bi − bi−1)

2
K−1

(
Dsi J

TQRJDcVi + Dci J
TQLJDsVi

))
Y i = si ,(

I + (bi − bi−1)

2
K−1

(
Dsi J

TQRJDcVi + Dci J
TQLJDsVi

))
Z i = ci ,

Compute

(cyi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDcVi yi ,

(czi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDcVi zi ,

(syi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDsVi yi ,

(szi ) = bi − bi−1

2
K−1[11, 12, . . . ,1p]RLJDsVi zi ,

Endfor
Form and solve the linear system of equations (37).
Compute Chebyshev coefficients of the components of the
solution9 j in the last subinterval of partition,

xj = diag(C−1, . . . ,C−1)J(ymam + zmbm).

For i = 1, . . . , s,
use the Chebyshev coefficients of thei th
component of9 j , namely,

xj ((i − 1)n+ i : in + i )

to compute9i j (T) and9 ′i j (T) using
the above three-term recursion satisfied by
Chebyshev polynomials and their derivatives
and computeαi j andβi j via (16) and (17).

Endfor
Solve (20).

Endfor.

5. NUMERICAL EXAMPLES

The first two examples are used for numerical testing of the IEM. They contain exponential
potentials for which analytical solutions are known in some cases and are not intended
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to represent real life physical situations. A more realistic Lennard–Jones potential with
constants corresponding to a real case is used as a third example.

The exponential potential matrix is of the form

V(r ) =
(
v1 u

u v2

)
V0 exp(−r/α), (46)

and the values ofV0, α, v1, v2, u, and of the wave numberk are specified in the numerical
applications below. In the first example both channels have positive energies of equal value
k2. In the second example one channel has a positive energyk2, and the other channel a
negative energy−k2. In the first example the analytic solution can be found, in the second
example an analytic solution is not known to the authors. In the first two examples our
numerical IEM is compared with a finite difference method, so as to obtain a comparison
of accuracy of both methods. The finite difference method used is the Numerov algorithm
[15], which was also used in our single channel paper [1], along with a variable step size
method of Raptis and Cash, for numerical comparisons. We would like to emphasize once
more that the purpose of the numerical experiments in this paper is mainly to illustrate
the new features characteristic to coupled as opposed to single channel equations, rather
than comparing the accuracy of numerical methods, which was already done in [1]. We
choose here the Numerov method as a generic finite difference method because it is an
easy to implement, reliable, and widely used method, although we are now aware of more
advanced finite difference methods such as the recently developed exponentially fitted
methods, see [16, 17] and references therein. A numerical comparison of our method with
a finite element method and a Numerov-type finite difference method for the case of the
Lennard–Jones potential can be found in [18].

In particular, we observe in the first example, in Subsection 5.1 below, that regardless of
which finite difference method is used for solving initial value problems, the matching ma-
trix for combining these solutions to satisfy the required asymptotic conditions can become
increasingly ill conditioned. The IEM method does not have this potential disadvantage, as
will be shown. We also observe in the second example of mixed positive-negative energy
channels that the combination of outgoing and incoming solutions of initial value problems
in finite difference methods needed to suppress growing solutions becomes quite cumber-
some with an increasing number of channels. The IEM requires certain scaling of negative
channels as described in Section 2, but there is no difficulty in combining the particular
solutions to satisfy the required asymptotics.

5.1. Two Positive Channel Energies

The solution of the coupled equations is defined such that the asymptotic form of the
upper and lower components is

9 ≡
(
ψ1

ψ2

)
∼
(

F1(k1r )+ ρ1G1(k1r )

ρ2G2(k2r )

)
, (47)

where the functionsFi andGi are the regular and irregular Riccati–Bessel functionszi jl i (zi )

and –zi yli (zi ), respectively, andzi = ki r for i = 1, 2. For the present casek1= k2= k and
l1= l2= l .

The procedure for obtaining the solution of the coupled equations by finite difference
methods consists of constructing two functionsξ andπ , whose upper and lower components
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are zero at the origin, but which have different combinations of slopes at the origin,

d

dr

(
ξ1

ξ2

)
r=0

=
(

1

0

)
; d

dr

(
π1

π2

)
r=0

=
(

0

1

)
. (48)

The values ofx andy for the appropriate linear combination of the two solutions

9 = x4+ y5. (49)

are obtained from the asymptotic requirement of (47). This is implemented by expressing
the upper and lower components of the functions4 and5 in terms of the functionsFi

andGi

ξi = Ai ξ Fi + Bi ξGi ; πi = Aiπ Fi + BiπGi , i = 1, 2, (50)

in the vicinity ofr = T , as is done near Eq. (16). For sufficiently large values ofT , for which
the non-centripetal potentials become negligible, the quantitiesA andB become constants.
If the matricesAF andBF (F stands for the finite difference method) are defined as

AF =
(

A1ξ A1π

A2ξ A2π

)
r=T

; BF =
(

B1ξ B1π

B2ξ B2π

)
r=T

(51)

thenx andy are obtained from

AF

(
x

y

)
=
(

1

0

)
, (52)

andρ1 andρ2 are obtained from(
ρ1

ρ2

)
= BFA−1

F

(
1

0

)
. (53)

Because the functions4 and5 are defined near the origin, then, under certain conditions
they can become asymptotically nearly linearly dependent, regardless of the specific finite
difference method used to solve (48). The more dependent they are, the more ill-conditioned
the matrixAF becomes, and the operationA−1

F in (53) introduces correspondingly large er-
rors, which add themselves to the intrinsic errors of the finite difference method. The former
error can be assessed from the condition number of the matrixAF . For the exponential case
with l = 0 the functions4,5, the matrixAF , and its condition number can all be obtained
analytically in terms of expressions involving Bessel functions and their derivatives. It is
found that as the wave numberk decreases toward zero the condition number increases
exponentially as can be seen in Fig. 1. The effect becomes more pronounced as the range
α of the exponential potential increases, as can be seen from Fig. 2.

By contrast the IEM method does not suffer from this difficulty. In thel = 0 case it au-
tomatically produces the correct asymptotic behavior in both channels, without requiring
the linear combination of two solutions. Forl 6= 0 two solutions and their appropriate linear
combination are required. They are obtained by driving the solution of the integral equa-
tion (15) either by the vectorv1= (sin(k1r ), 0)T or v2= (0, sin(k2r ))T . The solution9 is
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FIG. 1. The condition number of the matrixA, defined in Eq. (51), as a function of the wave numberk, for the
two channel case with exponential potentials and positive energies. The range of the exponential potential defined
in Eq. (46) isα= 1 f m−1. The larger the condition number, the less independent the two solutions of the coupled
equations become. The angular momentum number is denoted byL; the three lower curves are obtained with the
integral equation method.

obtained from these two solutions as explained in Section 2 above, by means of Eq. (20).
Our numerical examples confirm the well conditioning of the coefficient matrix in (20).

The condition number of a matrix is defined as the ratio of the largest to the smallest
singular value of the matrix [11]. The singular values can be obtained numerically through
the subroutine DLSVRR in the International Mathematical Scientific Library (IMSL.)

5.1.1. Numerical results.In this example the energies in both channels are equal and
positive, and the potential strength isV0= 5/

√
2 f m−2 (the f m is the nuclear unit of

length=10−15m). The potential matrix, defined in (46), is taken to be of the form(
v1 u

u v2

)
=
(

1 1

1 −1

)
, (54)

i.e., the diagonal potential in the incident channel is repulsive, in the second channel it is
attractive, and the coupling potential is of the same strength. The values of the decay constant
α will be either 1 f m or 4 f m, and the corresponding values of the truncation radiusT will
be 50 f m or 140 f m, respectively. The condition numbers for these two cases are shown in
Figs. 1 and 2, as a function of the wave numberk1= k2= k. The finite difference results are
obtained with a coupled channel Numerov method which is accurate to the sixth order in
the step-sizeh in each three-point interval (while the global accuracy is of order'h−4), and
h= 0.015625f m. For the IEM the number of partitions, each with 16 Chebyshev points,
for the two cases are 65 and 114, respectively. In the exponential examples the partitions
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FIG. 2. Same as Fig. 1 for the caseα= 4 f m−1. The dotted line is obtained via an analytic simulation of the
finite difference functionsΞ andΠ, described in the text.

are equally spaced. The calculation is done on an IBM mainframe, in double precision with
approximately 14 significant figures.

For the Numerov finite difference method the condition numbers of the matrixAF for
theα= 1 case are less than about 100 for the three angular momentum numbers shown,
indicating that no great loss of accuracy takes place in combining the two functions4 and5
in order to obtain9. However, for theα= 4 case the condition numbers become very large
for small values ofk, in agreement with the theoretical expectation, based on the analytic
solutions, which forl = 0 is shown by means of the dotted line in Fig. 2. By contrast the
condition numbers for the IEM case always remain small, less than approximately 100.
The loss of accuracy for the Numerov case, and the lack of loss of accuracy for the IEM,
expected from the values of the condition numbers of the matrix are analyzed in Fig. 3 for the
α= 4, l = 0 case. Shown are the absolute errors in the combined values of the asymptotic
coefficientsρ1 andρ2 as a function of the wave number. These errors are obtained by
comparing the numerical values with the analytical ones. The IEM error (solid circles) is
approximately one order of magnitude larger than the machine accuracy, while the Numerov
errors are much larger and increase with decreasing values ofk, as is expected from the
condition numbers. A further demonstration that the condition numbers are responsible in
large part for the lack of accuracy of theρ values, rather than the error of the finite difference
algorithm, is given by the two curves labeled Attr. and Rep. They represent the Numerov
error of theρ values for uncoupled cases, using either the attractive or the repulsive diagonal
potential, respectively. This error is much lower than that for the coupled case, showing that
the process of performing the linear combination of the two functions4 and5 introduces
an additional substantial error.
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FIG. 3. Accuracy of the asymptotic constantsρ1 andρ2 for the coupled channel case with exponential potentials
and equal energies, as a function of the wave numberk, for l = 0. The accuracy is obtained by comparison with
the analytic results. The two middle lines, denoted Rep. and Attr., represent the accuracy of the Numerov method
for the uncoupled cases, with a repulsive or attractive potential, respectively.

In Figs. 4 and 5 we examine in more detail the condition numbers for the IEM,α= 4
case. It can be seen from Fig. 4 that among the variousl -values examined, the values of
the condition number are largest forl = 2 in the vicinity ofk= 0.3 f m−1. A more detailed
study shows that fork in the interval 0.28 to 0.31 f m−1 the determinant of the matrixAIEM

(the IEM equivalent ofAF ), goes through a zero, with a sharp discontinuity from−∞
to +∞ neark= 0.30. At this point the values ofρ1 andρ2 also become infinite, which
means that the phase shiftsϕi = arctan(ρi ) go through a multiple ofπ/2. The occurrence
of such points is inherent in the physical conditions of the problem at hand and is inde-
pendent of the numerical method used for the evaluation of the corresponding coupled
equations. For example, the condition numbers for the Numerov method are also large near
thel = 2, k= 0.3 f m, α= 4 f m point.

In summary, the basic difference between the finite difference and the integral equa-
tion method in the solution of coupled equations lies in the linear independence of the
solutions needed to satisfy the appropriate asymptotic boundary conditions. The solutions
obtained by a finite difference method are maximally linearly independent near the ori-
gin, while the ones obtained from the IEM method maintain their linear independence
asymptotically, because they are based on Greens functions which contain the appropri-
ate asymptotic, behavior. This fact also holds for the coupling between channels some of
which have negative energies, as will be demonstrated in the next section. In addition, the
IEM, being a spectral method, has a higher inherent accuracy, than the finite difference
methods.
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FIG. 4. Condition numbers for the IEM calculation for the coupled channel case described in Fig. 2, for five
angular momentum numbers.

FIG. 5. Detail of the condition number for the case described in Fig. 4.
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5.2. One Positive and One Negative Channel Energy

In this case the asymptotic behavior of the wave function will be described by the constants
ρ1 andρ2 according to

9 ≡
(
ψ1

ψ2

)
∼
(

F1(kr)+ ρ1G1(kr)

ρ2 exp(−κr )

)
, (55)

where the functionsFi andGi are defined in connection to (47).
This (pos-neg) case differs from the (pos-pos) energies case in three respects.

(a) The solution by the finite difference method is now more complicated because it
requires the linear combination of five different functions: two “inside” solutions started
near the origin and integrated outwards, as described in (48), and three “outside” solutions
started at the truncation radiusT and integrated inwards. At some intermediate distance
these functions and their derivatives are matched to each other, leading to a 4× 4 matrix
for determining the appropriate linear combination of these functions. The fifth coefficient
is determined from an overall asymptotic normalization. The three outside solutions have
(upper, lower) components in the vicinity ofr = T of the form(sinkr, 0), (coskr, 0), and
(0, exp(−κr )), wherek andκ are the wave numbers in the positive, respectively negative,
energy channels. By contrast, as explained near Eq. (17), the IEM method requires only
as many different solutions as there are positive energy channels (one solution in this two-
channel example), because the exponentially decreasing character of the solutions in the
negative energy channels is automatically implemented through the appropriate behavior
of the respective Green’s functions.

(b) The solution for the IEM is now also more complicated in that the Green’s functions
in each partition for the negative energy channel need to be scaled, as explained in Section 3
above, so as to compensate for the large disparity of their values. The Green’s functions
now include expressions sinh(κr ) and exp(−κr ), which for large values ofr can have
very different values from each other and from the Green’s functions in the positive energy
channel. Such scaling has been implemented successfully, as was tested by comparison
with the analytic solution for an uncoupled negative energy channel with an exponential
potential.

(c) The large-distance behavior of the negative energy wave function can be very
sensitively affected by the coupling to the positive energy wave function, even though the
coupling potential is small, but not zero. Thus, the asymptotic behavior exp(−κr ) is not
achieved, and henceρ2 is T-dependent, unless the coupling potential is sufficiently small.

5.2.1. Numerical example.The features described above will now be illustrated by
a numerical example with exponential potentials. The potential strength is againV0=
5/
√

2 f m−2, and the potential matrix, defined in (46) is of the form(
v1 u

u v2

)
=
(

1 u

u −1

)
. (56)

Unless stated otherwise, the coupling strength parameteru is equal to 1. Numerical evalua-
tion of the asymptotic constantsρ1 andρ2, for a fixed value ofT and various choices of the
partition numberM , was found to be stable to 13 significant figures whenM ≥ 40, for both
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TABLE I

Accuracy in ρ1 and ρ2, with the Numerov Methoda

k= κ α= 1, T = 25 α= 4, T = 50

( f m−1) (ρ1, ρ2) C.N.b (ρ1, ρ2) C.N.b

0.25 (9, 8) 2.8(3) (5, 3) 7.3(8)
0.50 (9, 8) 1.8(3) (5, 3) 1.7(13)
0.75 (8, 6) 2.5(3) (1, 2) 1.6(22)
1.00 (7, 5) 1.4(3) (1, 0) Overfl.
1.25 (8, 2) 4.5(3) (0, 0) Overfl.
1.50 (9, 2) 8.9(7) (0, 0) Overfl.

a The quantities (x, y) indicate the number of significant figures x and y for
ρ1 andρ2, respectively, which after rounding, agree with the IEM results.

b C.N. is the condition number, the figures in parentheses are the powers of
10 by which the preceding numbers are to be multiplied.

α= 1 f m, andα= 4 f m. An exception was the “resonance” casek= 0.25 f m−1, α= 4 f m,
andl = 0, for whichρ1 was stable to only 10 significant figures. The accuracy of the solu-
tion obtained with the Numerov finite difference method was obtained by comparison with
the IEM results. The smallest value of the step-sizeh= 2−7 f m employed tended to give
the most accurate results. Table I shows that the Numerov method becomes increasingly
inaccurate as the rangeα of the potential increases, and it fails completely forα= 4 f m
andκ >1. The same is not the case with the IEM as is shown in Table II.

According to Tables I and II, the values ofρ2 increase drastically asκ increases. The
explanation can be found in the fact that the wave function in the negative energy channel
does not decrease proportional to exp(−κr ), contrary to what is implied by (55), but it
decreases proportional to the value of the coupling potential exp(−r/α). This is the case
whenever, in the negative energy channel, the coupling to the positive energy wave function
dominates over the energy term, i.e., whenκ2ψ2<V21ψ1. This feature will now be illustrated
by means of Figs. 6 and 7. The wave functions in the positive and negative energy channels,
ψP andψN , respectively, are illustrated in Fig. 6 for the casel = 0, k= κ = 1.2 f m−1,

TABLE II

Values ofρ1 and ρ2, Obtained with the IEM Method a

k= κ α= 1, T = 25 α= 4, T = 50

( f m−1) ρ1 ρ2 ρ1 ρ2

0.25 −0.700811(0) −0.274203(0) −0.213745(2) −0.188132(3)
0.50 −0.231030(1) −0.747343(0) 0.267050(0) 0.145771(7)
0.75 0.268109(1) −0.510719(1) 0.302913(0) 0.152607(12)
1.00 0.715728(−1) −0.272947(1) 0.305707(1) −0.543449(16)
1.25 −0.457558(0) 0.578646(3) −0.335135(0) 0.482995(22)
1.50 −0.667470(0) 0.214832(6) −0.499902(1) 0.202962(28)

a The figures in parentheses are the powers of 10 by which the preceding numbers are to be
multiplied.
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FIG. 6. Wave functions for the coupled channel case with one positive (P) and one negative (N) energy for
k= κ = 1.2 f m−1. The exponential potential is described in Eqs. (46) and (54), withα= 1 f m−1. The negative
wave function is decaying to zero, as expected.

andα= 1 f m. It is clear thatψN decreases with the radial distancer . That the decrease
is proportional to exp(−r/α) can be seen from Fig. 7, which illustratesψN multiplied by
exp(r/α) for l = 0 and 2 (solid lines). Even if the coupling potential is reduced by a factor
of 100, the effect still persists, as is illustrated forl = 0 by the dashed line in Fig. 7. The
oscillatory nature ofψN reflects the oscillatory nature ofψP.

5.3. The Lennard–Jones Potential

The purpose of this two channel example with one positive and one negative energy,
respectively, is to demonstrate the performance of the IEM for a more realistic model
calculation that captures the essence of the collision of two ultracold2S alkali atoms. It was
suggested by E. Tiesinga and is examined in more detail in a further study [18].

FIG. 7. Wave functions for the negative energy channel, for the case described in Fig. 6. In order to avoid
having to use a logarithmic scale, the wave functions are multipled by exp(r/α) times an appropriate constant. The
oscillatory nature and the decay properties of the functions are due to the coupling to the positive energy channel.
For the solid lines the coupling strengthu in Eq. (54) is unity; for the dashed line it isu= 0.01.
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The simplest multi-channel potential that describes the physics of the interaction be-
tween two colliding atoms is a two channel model. Taking into account that for small
collision energies the nuclear rotation can be safely ignored, the non-rotating Hamiltonian
is parametrized as{

− h̄2

2µ
1

d2

dr2
+
(

ṼLJ(r ) Ãe−br

Ãe−br ṼLJ(r )

)
−
(

Ẽ

Ẽ − Ẽhf

)}(
ψP

ψN

)
= 0, (57)

where the reduced massµ=M/2, Ẽhf is the asymptotic splitting energy between the two
channels, and̃E is the incident kinetic energy in the system. Ther -dependent diagonal
potentials of our test problem are of the Lennard–Jones formṼLJ(r )= C̃12/r 12 − C̃6/r 6

together with an off-diagonal exchange coupling given byÃe−br . The functionsψP and
ψN describe the wavefunction for the open and closed channel, respectively.

For two colliding ultra-cold2S Na atoms, realistic values of the constants are [19]
M = 22.9897680 amu,̃C6= 1472 a.u.(a0)

6, C̃12= 38× 106 a.u.(a0)
12, Ã= 2.9 a.u.,b=

0.81173a0, andẼhf= 0.2693× 10−6 a.u. This choice of̃Ehf is approximately equal to the
atomic hyperfine splitting of the2S Na atom. The total energỹE= 3.1668293× 10−12 a.u.
corresponds to a temperature of 1µK. SinceẼ¿ Ẽhf, the energy in the second channel is
negative, i.e., only one of the two channels is asymptotically accessible. In the above a.u.
stands for atomic units, anda0 is the Bohr radius. The conversion into entirelya0 units is
achieved by multiplying the above equation by 2µ/h̄2. One obtains(

− d2

dr2
+ V − E

)(
ψP

ψN

)
= 0, (58)

wherer is in units ofa0 and the potential and energy matrices,V andE , respectively, are
in units of (a0)

−2. The conversion of a quantity in a.u. units to (a0)
−2 units is achieved

by multiplying the former byµ= 22.989768× 1822.888506 (a.u.)−1 (a0)
−2. The potential

matrix is

V =
∣∣∣∣V U

U V

∣∣∣∣, (59)

whereV = Ṽ ×µ andU = Ũ ×µ, and the energy matrix is

E =
∣∣∣∣k2

−κ2

∣∣∣∣. (60)

Herek andκ are the asymptotic wave numbers in each channel, given byk=
√

Ẽ×µ and
κ =

√
Ẽhf×µ− k2. The corresponding values arek= 3.643004224146145× 10−4 (a0)

−1

andκ = 0.1062338621818394(a0)
−1. The wave function is normalized so that asymptoti-

cally it becomes (
ψP

ψN

)
≈
(

sin(kr)+ ρ1 cos(kr)

ρ2 exp(−κr )

)
, (61)

whereρ1 andρ2 are two elements of the real scatteringK matrix, in terms of which the
phase shifts can be obtained.

Between 6 and 10a0 the diagonal potential is very deep leading to many oscillations in
the wave functions, and at small distances the repulsive portion of the potential becomes
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very large making the wave function very small. At large distances the wave functions
change very slowly because of the small values of the asymptotic wave numbers. In order
to accommodate such large variations in the local wave number, a variable partition size
is introduced, as is described below. In order to allow for the singularity near the origin, a
parameterRcut is defined, and the wave functions are set to zero in the interval [0,Rcut].
A value of Rcut= 4.0a0 is found to be satisfactory. In addition, the calculation is carried
out to a maximum radius,Rmax, beyond which all potentials are set equal to zero. In the
calculations displayed below,Rmax= 500ao. At this distance the Lennard–Jones potential
has the value−3.95× 10−9a−2

0 . However, increasing the value ofRmax has an effect beyond
the 6th significant figure on the values ofρ1 andρ2, as can be seen from the Table V. That
such a small potential should have such a large effect on the phase-shift is due to the
small energy. This is understandable in terms of perturbation theory, in which the integrals
over the tail of the potential contain a factor 1/k, which is large at small values of the
energy.

In the version of the IEM method used for this section the (variable) size of each of
the partitions is determined in terms of two parametersN L and ε as follows. In each
radial region a local wave length in channels 1 and 2 is obtained as 2π/

√
k2− V(r ), and

2π/
√
|−κ2− V(r )|. The smaller of the two local wavelengths is taken, and the size of

the partition in that region is determined such that there are a given total numberN L of
Chebyshev points per local wave length. Allowing for the fact that in each partition there
are 16 Chebyshev points, the average length of a partition for a given local wave lengthλ

is λ× 16/N L. The length of each partition is subsequently readjusted using the tolerance
parameterε as follows. In each partition two sets of “local” functions are calculated in terms
of which the global functionψ is obtained as a linear combination, as has been described
before. The accuracy of each of the local functions can be determined by the size of the
coefficients of the highest order Chebyshev polynomials. If the relative accuracy of the local
functions in a given partition is larger thanε, then that partition is divided in half, and the
testing is continued. If the initially chosen value ofN L is too small, then the initial partitions
are too large, and many of the partitions are subsequently reduced by theε criterion. In this
case the final number of partitionsM becomes larger than their initial value. If the chosen
value ofN L is too large, then most of the partitions are unnecessarily small, and the value
of M is too large, leading to a larger accumulation of roundoff errors for the final values of
the K -matrix elements.

In summary, for a given value ofε, the value ofN L was varied until the smallest number
of partitionsM was obtained. An example is given in Table III, for whichRmax is set equal
to 500ao.

From Table III one can find values ofρ1=−0.3123339834 andρ2= 6.576130397 which
are stable to ten significant figures. For values of the toleranceε between 10−9 and 10−3 a
good compromise value forN L= 20 was found. The values ofM and the corresponding
accuracy ofρ1 are listed in Table IV for several values ofε.

The corresponding distribution of partitions for each of the three tolerance parame-
ters is shown in Fig. 8. The increasingly large spacing of the partitions at the large dis-
tances is clear from the figure. In the vicinity ofR' 50 the density of partitions is high
because the negative energy channel has a turning point there. This means that the lo-
cal wave-length criterion alone would have been insufficient to determine the partition
size.

An example of the variation of theρ’s with Rmax is given in Table V, for whichε= 10−9.
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TABLE III

Values ofρ1,ρ2, and Number of Partitions M as a

Function of NL for the Toleranceε = 10−9

N L M K1 K2

10 150 −0.31233398338182 6.5761303970458
20 153 −0.31233398338791 6.5761303971183
30 144 −0.31233398337104 6.5761303968390
40 154 −0.31233398338581 6.5761303970972
50 177 −0.31233398338729 6.5761303971378

TABLE IV

Accuracy for ρ1 and Number of Partitions

M for a Given Value of the Toleranceε

ε M No. of sign. figs.

10−3 30 5
10−6 85 8
10−9 153 10

FIG. 8. Distribution of partition lengths for the Lennard–Jones cold atom collision example. This figure
illusrates the results of Table IV. The points are located at the start of each partition with the corresponding
partition number along the vertical axis. The circles, diamonds, and triangles correspond respectively to an accuracy
parameter,ε, equal to 10−9, 10−5, and 10−3. The corresponding number of significant figures of accuracy for the
scattering quantity,ρ1, is indicated next to each curve. The abrupt increase in the partition density nearr = 50ao

for the two upper curves is due to the local wave number in the negative channel going through zero near this
point. The logarithmic derivative of the wave function changes sign in this region.
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TABLE V

Dependence ofρ1 and ρ2 on Rmax

ρ1 ρ2 Rmax

−.313705209 6.62005410 250
−.312333983 6.57613040 500
−.312324588 6.57555968 1000
−.312324073 6.57558157 1500
−.312323719 6.57558741 2000

6. SUMMARY AND CONCLUSIONS

In this study we have extended the integral equation method of [1] to the case of coupled
equations, in which at least one channel has a positive energy. The flexible partition structure
of the one channel case is also preserved here, and so is the sparse nature of the “big” matrix
required to obtain the coefficientsA and B. These are the coefficients which, in each
partition, combine the local solutions,Y and Z, into the global one. The high numerical
accuracy is also maintained because the solutions in each partition are computed using
a spectral type numerical method. The main difference to the uncoupled case is that for
angular momentum numbers` 6= 0, the asymptotic boundary conditions are not as easy to
satisfy for the positive energy channels as for the one-channel case. The coupled integral
equations now have to be solved as many times as there are open channels, each time
with a different driving term, and linear combinations between these solutions have to be
implemented. However, in contrast to the solution of the coupled equations by a finite
difference method, our IEM solutions are linearly independent at large distances, and the
appropriate linear combinations can be obtained without difficulty. Further, the solutions in
the negative energy channels automatically decay exponentially at large distances, because
of the preestablished exponential behavior of the Green’s functions. The “big” matrixM
of the linear system of equations for the coefficientsA andB is still block tridiagonal. The
blocks, however, increase their dimension to twice the number of channels. For example,
in the case of one channel, these block matrices are of dimension 2× 2, for two channels
they are 4× 4, etc.

The accuracy properties were exhibited by means of numerical examples involving two
channels. In one set of examples the potentials (diagonal and off-diagonal) were chosen to
have the same exponential behavior but with different coefficients, because when the ener-
gies in both channels are equal and when`= 0 an analytical solution exists for comparison.
The stability of the IEM method was generally to nine significant figures. Another numer-
ical example for the case of the collision of two atoms at very low temperature, interacting
with a long range Lennard–Jones potential was also carried out.

The differential equations can also be transformed into Volterra-type integral equations.
The kernel of these equations is more singular at the origin than the kernel of the non-
Volterra type, used in this and in our previous study. As is shown in the first part of the
Appendix numerical calculations for various examples with the Volterra type show that this
singularity does not affect the numerical accuracy, in fact, in all of our experiments the
obtained accuracy was as good or better than that of the original IEM. In addition, the “big”
matrix in this case is entirely lower triangular, and hence the solution for the coefficients
A and B can be set up as a simple recursion which is more efficient and requires less
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memory. The Volterra method is thus preferred, especially in the case of large scale systems
of coupled equations. The description of this method is given in Appendix 1.

The IEM can be easily extended to the solution of an inhomogeneous second order
differential equations. The presence of the inhomogeneous termI(r ) requires minor mod-
ifications, and it does neither affect the partition structure nor the structure of the “Big”
matrix M , which remains exactly the same as in the homogeneous case. A description of
the method is presented for the uncoupled channel case in Appendix 2.

In summary, the coupled channel IEM method has good numerical stability and ease of
implementation of the asymptotic boundary conditions for scattering situations. The method
is carried out in configuration space, and hence is well suited for cases in which there are
small effects which occur at large distances in the presence of many coupled channels,
including the case where Coulomb potentials are present.

APPENDIXES

Here we present two relevant new developments in the single channel case. In the first one
the Fredholm integral equation is replaced by a Volterra integral equation which leads to a
block-triangular linear system of equations in (37), solved by a simple substitution. Apart
from making the whole algorithm more efficient and accurate, it also simplifies substantially
the corresponding FORTRAN code. For the sake of simplicity we give here only a brief
outline of the Volterra formulation, and its extension to the multichannel case.

The second addition shows how to treat the inhomogeneous case.

APPENDIX 1: THE VOLTERRA FORMULATION

In the single channel case our integral equation formulation of the single channel
Schrödinger equation is

ψ(r )+ 1

k
sin(kr)

∫ T

r
cos(kr ′)V(r ′)ψ(r ′) dr ′

+ 1

k
cos(kr)

∫ r

0
sin(kr ′)V(r ′)ψ(r ′) dr ′ = sin(kr),

and can be rewritten as a Volterra equation as

ψ(r )+ 1

k
cos(kr)

∫ r

0
sin(kr ′)V(r ′)ψ(r ′) dr ′ − 1

k
sin(kr)

∫ r

0
cos(kr ′)V(r ′)ψ(r ′) dr ′

=
(

1− 1

k

∫ T

0
cos(kr ′)V(r ′)ψ(r ′) dr ′

)
sin(kr).

Therefore we can solve this equation instead and then scale its solution in the same way as
before to match the required asymptotic behavior. Since the scaling of the right hand side
is immaterial, we solve

φ(r )+ 1

k
cos(kr)

∫ r

0
sin(kr ′)V(r ′)φ(r ′) dr ′

− 1

k
sin(kr)

∫ r

0
cos(kr ′)V(r ′)φ(r ′) dr ′ = sin(kr ′).
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We now explain the few minor modifications required for the Volterra formulation and
present results of our numerical experiments. After partitioning the interval [0, T ] into
small subintervals, we solve in each subinterval a pair of equations,

yi (r )+ 1

k
cos(kr)

∫ r

bi−1

sin(kr ′)V(r ′)yi (r
′) dr ′

− 1

k
sin(kr)

∫ r

bi−1

cos(kr ′)V(r ′)yi (r
′) dr ′ = sin(kr) (62)

and

zi (r )+ 1

k
cos(kr)

∫ r

bi−1

sin(kr ′)V(r ′)zi (r
′) dr ′

− 1

k
sin(kr)

∫ r

bi−1

cos(kr ′)V(r ′)zi (r
′) dr ′ = cos(kr), (63)

such that the global solution, forr in thei th subinterval, is a linear combination of the local
solutions,

ψ(r ) = Ai yi (r )+ Bi zi (r ).

The coefficientsAi , Bi are found now from a simple recursion, rather than by solving a
block-tridiagonal system of equations as in [1],A1= 1, B1= 0, and fork= 2, . . . ,m,

Ak = 1+ [(A1cy1+ B1cz1)+ · · · + (Ak−1cyk−1+ Bk−1czk−1)],

Bk−1 = −[(A1sy1+ B1sz1)+ · · · + (Ak−1syk−1+ Bk−1szk−1)],

with the notations exactly the same as in [1]. The derivation is very similar to the one in
[1] and is omitted here. The discretization of the local equations (62) and (63) results in the
following linear systems of equations,[

I + bi − bi−1

2k

(
Dci CSLC−1Dsi vi − Dsi CSLC−1Dci vi

)]
yi = si

and [
I + bi − bi−1

2k

(
Dci CSLC−1Dsi vi − Dsi CSLC−1Dci vi

)]
zi = ci ,

where the notation again is exactly the same as in [1].
To find the appropriate normalization constant we recall that for sufficiently larger the

solutionψ(r ) is a linear combination of the corresponding Riccati–Bessel functions. So we
choseT1= T andT2 nearT and get

ψ(T1) = αFl (T1)+ βGl (T1)

ψ(T2) = αFl (T2)+ βGl (T2).
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Therefore, [
α

β

]
=
[

Fl (T1) Gl (T1)

Fl (T2) Gl (T2)

]−1[ ψ(T1)

ψ(T1),

]
and the normalization constant is now given by

Nl = 1

α − iβ
.

Our numerical experiments show that this method is more efficient and more accurate
than the original method based on the Fredholm formulation.

In the coupled channel case we replace the integral equation (5) with the corresponding
Volterra integral equation,

9 j (r )+ K−1C(r )
∫ r

0
S(r ′)V(r ′)9 j (r

′) dr ′ − K−1S(r )
∫ r

0
C(r ′)V(r ′)9 j (r

′) dr ′ = U j (r ),

(64)

where the notations are the same as in the preceding sections. The restricted equations take
the form

Yi (r )+ K−1C(r )
∫ r

bi−1

S(r ′)V(r ′)Yi (r
′) dr ′ − K−1S(r )

∫ r

bi−1

C(r ′)V(r ′)Yi (r
′) dr ′ = S(r )

(65)

and

Zi (r )+ K−1C(r )
∫ r

bi−1

S(r ′)V(r ′)Zi (r
′) dr ′ − K−1S(r )

∫ r

bi−1

C(r ′)V(r ′)Zi (r
′) dr ′ = C(r ),

(66)

such that on thei th subinterval,9 j (r )=Yk Ak+ Zk Bk, whereAk and Bk are defined as
before. The computation ofAk andBk is much easier now, however, as they satisfy a simple
recursion,

Ai = ej −
i−1∑
k=1

[CYk Ak + C Zk Bk],

and

Bi =
i−1∑
k=1

[SYk Ak + SZk Bk],

with A1= ej andB1= 0. The minor modification of the discretizations of the local equations
is (

I + (bi − bi−1)

2
K−1

(
DCi J

TQLJDSVi − DSi J
TQLJDCVi

))
Y i = Si ,

and (
I + (bi − bi−1)

2
K−1

(
DCi J

TQLJDSVi − DSi J
TQLJDCVi

)
Z i = Ci .
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To find the linear combination of91(r ),92(r ), . . . , 9s(r ) which satisfies the required
asymptotics, we setT1= T , chooseT2 nearT , and solve[

αi j

βi j

]
=
[

Fli (T1) Gli (T1)

Fli (T2) Gli (T2)

]−1[
9i j (T1)

9i j (T2)

]
.

Then

R= x191+ x292+ · · · + xs9s,

where 
x1

x2
...
xs

 =

α11 α12 · · ·α1s

α21 α22 · · ·α2s
...

αs1 αs2 · · ·αss


−1

1
0
...

0

 .

APPENDIX 2: SOLUTION OF THE INHOMOGENEOUS EQUATION

The equation to be solved is(
− d2

dr2
+ VL(r )− k2

)
ψ(r ) = I(r ), (67)

whereVL includes the centripetal potential andk is the wave number. Below we describe
a method which avoids first having to calculate the distorted Green’s function, but rather
uses a procedure which is very similar to the one for solving the homogeneous equation.

We proceed by first writing the equation in the form(
d2

dr2
+ k2

)
ψ(r ) = VL(r )ψ(r )− I(r )

and then transforming it into the integral form

ψ(r ) = sin(kr)+ G0VLψ − G0I, (68)

whereG0 is the undistorted Green’s function(d2/dr2 + k2)−1. Form this point on the
procedure is very similar to that of the homogeneous case. One divides the radial range
[0, T ] into m partitions [bi−1, bi ], i = 1, 2, . . . ,m. In each partitioni one obtains three local
functionsyi , zi , and1i . The first two are identical to the ones obtained for the homogeneous
case (driven by the function sin(kr) and cos(kr)). They obey the equations

Oi yi = sin(kr), Oi zi = cos(kr),

whereOi is the operatorI −G0VL , which symbolically represents the expression given by
Eq. (3.1) of Ref. [1]. The third function is the solution of

Oi1i = χi , (69)
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where

χi (r ) = −(G0I)i = 1

k
cos(kr)

∫ r

bi−1

sin(kr ′)I(r ′) dr ′

+ 1

k
sin(kr)

∫ bi

r
cos(kr ′)I(r ′) dr ′. (70)

By writing out the integral overG0 in Eq. (68), one finds that

Oiψi (r ) = Ai sin(kr)+ Bi cos(kr)+ χi (r ), bi−1 ≤ r ≤ bi ,

from which it follows that

ψi (r ) = Ai yi (r )+ Bi zi (r )+1i (r ). (71)

According to Eq. (68), the coefficientsAi andBi satisfy the relations

Ai = 1− 1

k

∫ T

bi

cos(kr ′)(VL(r
′)ψ(r ′)− I(r ′)) dr ′

Bi = −1

k

∫ bi−1

0
sin(kr ′)(VL(r

′)ψ(r ′)− I(r ′)) dr ′.

Replacingψ(r ′) in the above expressions by Eq. (71) and decomposing the integrals into
sums over the integrals in each interval, one obtains a matrix equation for the coefficients
Ai andBi . By rearranging rows and columns, in a manner identical to what led to Eq. (3.11)
of [1], one finally obtains

M



α1

α2
...
...

αm−1

αm


=



0
0
...
...

0
u


+



d1

d2
...
...
...

dm


, (72)

where the “big” matrixM is identical to the one given for the homogeneous case, and the
vectorsα j , u, 0, anddj are

α j =
(

Aj

Bj

)
; u =

(
1
0

)
; u =

(
0
0

)
; (73)

dj =
(−(c1) j+1+ γ j+1

−(s1) j−1+ σ j−1

)
. (74)

Here, by definition,

(c1)p = 1

k

∫ bp

bp−1

cos(kr)VL(r )1(r ) dr,

(s1)p = 1

k

∫ bp

bp−1

sin(kr)VL(r )1(r ) dr
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γp = 1

k

∫ bp

bp−1

cos(kr)I(r ) dr,

σp = 1

k

∫ bp

bp−1

sin(kr)I(r ) dr.

In the above it is assumed that(s1)p= σp= 0 for p= 0, (c1)p= γp= 0 for p≥m.
Equations (72)–(74) are the main result of this appendix. They show that the coeffi-

cientsAi andBi have three components. One component,A(0)i andB(0)i , is identical to the
solution of the homogeneous equation, and gives rise to the solution of the correspond-
ing homogeneous Schroedinger equation, denoted asF below. The other component,A(I)i

and B(I)i , driven by the column containing thedj ’s, gives rise to a special solution of the
inhomogeneous equation.

At large distances where the potential and the inhomogeneous term go to zero, the coef-
ficients A(0)i → 1, A(I)i → 0 for i 'm, while the coefficientsBi approach constant values.
Hence asymptotically the main effect of the inhomogeneous term is to change the constant
in front of cos(kr), while at small distances the wave function changes due to the non-zero
values ofA(I )i , B(I )i , and1i .

Formally this result can be understood as follows. The effect of the inhomogeneous term
I(r ) is usually obtained by first defining a Green’s function which includes the distortion
due toVL , GV = (d2/dr2−VL +k2)−1, and then applying this operator uponI. By making
use of the well known relation betweenGV andG0,

GV = (1− G0VL)
−1G0 = (1+Ä)G0, (75)

where

Ä = (1− G0VL)
−1G0VL ,

one finds that

ψ = F + χ +Äχ. (76)

Hereχ was defined in Eq. (68), andF is the solution of the homogeneous equation (Eq. (67)
with I = 0), which in the partitioni is given by

F(r ) = φ +Äφ = φ(r )+ A(0)i Yi (r )+ B(0)i Zi (r ), (77)

with φ= sin(kr). From Eq. (77) above one concludes that(Äφ)i is equivalent to the nu-
merical procedure which leads toA(0)i Yi + B(0)i Zi (r ). Hence the termÄχ in Eq. (76) is
equivalent to that part ofA(I)i Yi + B(I)i Zi (r ) which is given by the terms due toγ andσ in
Eq. (72), and the termχ in Eq. (76) is due to the combination of1 and the terms(c1) and
(s1) in Eq. (72).
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